Skip to main content
Log in

Synthesis of hydrated tungsten(VI) oxide sols by peptization

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

A method has been developed for the synthesis of hydrated tungsten oxide hydrosols, with this method being based on potassium tungstate hydrolysis followed by peptization of the formed precipitate. The influence of the conditions of precipitation, aging, and washing of the precipitate on the particle phase composition and shape and the degree of precipitate peptization has been studied. Hydrosol-particle sizes have been determined by different methods. It has been found that the dispersed phase of the hydrosols consists mainly of platelike particles of hydrated tungsten oxide WO3 · 2H2O with a number-average size of 52 nm. The sols are stable to aggregation in a pH range of 3.0–4.5. The zeta potential of the particles ranges from–33 to–38 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fomanyuk, S.S., Kolbasov, G.Ya., Krasnov, Yu.S., and Zaichenko, V.N., Khim., Fiz., Tekhnol. Poverkh., 2011, vol. 2, no. 3, p. 308.

    CAS  Google Scholar 

  2. Martins Neto, J.R., Torresi, R.M., and Cordoba de Torresi, S.I., J. Electroanal. Chem., 2016, vol. 765, p. 111.

    Article  CAS  Google Scholar 

  3. Fominskii, V.Yu., Grigor’ev, S.N., Romanov, R.I., Zuev, V.V., and Grigor’ev, V.V., Semiconductors, 2012, vol. 46, p. 401.

    Article  Google Scholar 

  4. Ganesan, R. and Lee, J.S., J. Power Sources, 2006, vol. 157, p. 217.

    Article  CAS  Google Scholar 

  5. Brei, V.V., Shistka, D.V., and Prudius, S.V., Katal. Neftekhim., 2007, no. 15, p. 67.

    Google Scholar 

  6. Salmaoui, S., Sediri, F., Gharbi, N., Perruchot, C., Aeiyach, S., Rutkowska, I.A., Kulesza, P.J., and Jouini, M., Appl. Surf. Sci., 2011, vol. 257, p. 8223.

    Article  CAS  Google Scholar 

  7. Keereeta, Y., Thongtem, S., and Thongtem, T., Powder Technol., 2015, vol. 284, p. 85.

    Article  CAS  Google Scholar 

  8. Krasnov, Yu.S., Kolbasov, G.Ya., and Volkov, S.V., Nanosist., Nanomater., Nanotekhnol., 2008, vol. 6, p. 846.

    Google Scholar 

  9. Petrov, Yu.Yu., Cand. Sci. (Chem.) Dissertation, St. Petersburg St. Petersburg State Univ., 2007.

    Google Scholar 

  10. GOST (State Standard) 25849-83: Metallic Powders. Method of Particle Shape Determination.

  11. Chalyi, V.P., Gidrookisi metallov (Zakonomernosti obrazovaniya, sostav, struktura i svoistva) (Metal Hydroxides (Mechanism of Formation, Composition, Structure and Properties), Kiev Naukova Dumka, 1972.

    Google Scholar 

  12. Sultanova, A.B., Shoinbaev, A.T., and Guseinova, G.D., Vestn. KazNITU, 2011, no. 3, p. 108.

    Google Scholar 

  13. Supothina, S., Seeharaj, P., Yoriya, S., and Sriyudthsak, M., Ceram. Int., 2007, vol. 33, p. 932.

    Article  Google Scholar 

  14. Cruz, A.M., Martinez, D.S., and Cuellar, E.L., Solid State Sci., 2010, vol. 12, p. 92.

    Google Scholar 

  15. Nedostup, A.I., Aleksandrov, A.V., and Gavrilova, N.N., Usp. Khim. Khim. Tekhnol., 2014, vol. 28, no. 2, p. 120.

    Google Scholar 

  16. Kindyakov, P.S., Korshunov, B.G., and Fedorov, P.I., Khimiya i tekhnologiya redkikh i rasseyannykh elementov (Chemistry and Technology of Rare and Trace Elements), Moscow: Vysshaya Shkola, 1976, Chap. 3.

    Google Scholar 

  17. Nekrasov, B.V., Osnovy obshchei khimii, T. 1 (Fundamentals of General Chemistry. vol. 1), Moscow Khimiya, 1973.

    Google Scholar 

  18. Balazsi, Cs., Mater. Struct., 1999, vol. 6, p. 135.

    Google Scholar 

  19. Zhang, H., Duan, G., Li, Y., Xu, X., Dai, Z., and Cai, W., Cryst. Growth Des., 2012, vol. 12, p. 2646.

    Article  CAS  Google Scholar 

  20. Gouma, P.I. and Wang, L., Mater. Sci. Eng., 2015, vol. 4, p. 165.

    Google Scholar 

  21. Bai, S., Zhang, K., Wang, L., Sun, J., Luo, J., Li, D., and Chen, A., J. Mater. Chem. A, 2014, vol. 2, p. 7927.

    Article  CAS  Google Scholar 

  22. Djaoued, Y., Balaji, S., and Bruning, R., J. Nanomater., 2012, vol. 2012, Article ID 674168.

    Article  Google Scholar 

  23. Balazsi, Cs. and Pfeifer, J., Solid State Ionics, 1999, vol. 124, p. 73.

    Article  CAS  Google Scholar 

  24. Petrov, Yu.Yu., Avvakumova, S.Yu., Sidorova, M.P., Ermakova, L.E., and Merkushev, O.M., Colloid J., 2010, vol. 72, p. 663.

    Article  CAS  Google Scholar 

  25. Veilas, S.M., Khimicheskaya kinetika i raschety promyshlennykh reaktorov (Chemical Kinetics and Calculations of Industrial Reactors), Moscow Khimiya, 1964.

    Google Scholar 

  26. Pomerantsev, V.V., Osnovy prakticheskoi teorii goreniya (Fundamentals of the General Theory of Combustion), Moscow Energoatomizdat, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Aleksandrov.

Additional information

Original Russian Text © A.V. Aleksandrov, N.N. Gavrilova, V.V. Nazarov, 2017, published in Kolloidnyi Zhurnal, 2017, Vol. 79, No. 2, pp. 115–123.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aleksandrov, A.V., Gavrilova, N.N. & Nazarov, V.V. Synthesis of hydrated tungsten(VI) oxide sols by peptization. Colloid J 79, 173–180 (2017). https://doi.org/10.1134/S1061933X17020028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X17020028

Navigation