Skip to main content
Log in

Oscillatory Viscoelastic Model of Blood Flow in Stenotic Artery

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

An analytic solution for the two-layered model of pulsatile blood flow in stenotic arteries is discussed. The blood flow in narrow arteries is assumed to obey the two-fluid model: non-Newtonian viscoelastic as Jeffrey fluid in core region, and Newtonian as plasma fluid in peripheral region. The present study is aimed to develop an oscillatory viscoelastic model of blood flow and obtain the analytic expressions for velocity of pulsatile blood flow in a stenotic artery. The velocity of pulsatile blood flow is used to discuss the wall shear stress and volume flow rate through stenotic artery and to relate relaxation time, retardation time, height of the stenosis with the velocity, volume flow rate and wall shear stress. The solution of the model boundary value problem is obtained by the method of special functions under the assumption of steady oscillations. It is found that the velocity is directly proportional to relaxation time and on the other hand retardation time is inversely proportional. For non-zero time period, the wall shear stress increases as relaxation time increases and decreases as retardation time increases. It reveals a significant influence of relaxation and retardation time on oscillatory blood flow in stenotic artery under the pathological state of cardiovascular disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Lambossy, P., Helv. Phys. Acta, 1952, vol. 25, p. 371.

    CAS  Google Scholar 

  2. Peterson, L.H., Circ. Res., 1954, vol. 2, p. 127.

    Article  CAS  Google Scholar 

  3. Womersley, J.R., J. Physiol., 1955, vol. 127, p. 553.

    Article  CAS  Google Scholar 

  4. Hale, J.F., McDonald, D.A., and Womersley, J.R., J. Physiol., 1955, vol. 128, p. 629.

    Article  CAS  Google Scholar 

  5. McDonald, D.A., J. Physiol., 1955, vol. 127, p. 533.

    Article  CAS  Google Scholar 

  6. Womersley, J.R., Phys. Med. Biol., 1957, vol. 2, p. 178.

    Article  CAS  Google Scholar 

  7. Martin, A.T., Nicholas, D.S., and Teoman, A., J. Rhe-ol. (NY), 1973, vol. 17, p. 1.

    Google Scholar 

  8. Gopalan, N.P., B. Math. Biol., 1981, vol. 43, p. 563.

    Article  CAS  Google Scholar 

  9. Fåhraeus, R., Physiol. Rev., 1929, vol. 9, p. 241.

  10. Fåhraeus, R. and Lindqvist, T., Am. J. Physiol.-Legacy Content, 1931, vol. 96, p. 562.

  11. Bugliarello, G. and Sevilla, J., Biorheology, 1970, vol. 70, p. 85.

    Article  Google Scholar 

  12. Chakravarty, S. and Datta, A., Math. Comput. Model., 1992, vol. 16, p. 35.

    Article  Google Scholar 

  13. Sankar, D.S. and Ismail, A.I.M., Bound. Value Probl., 2009, Article no. 568657.

  14. Sankar, D.S. and Lee, U., J. Mech. Sci. Technol., 2007, vol. 21, p. 678.

    Article  Google Scholar 

  15. Srivastava, V.P. and Saxena, M., J. Biomech., 1994, vol. 27, p. 921.

    Article  CAS  Google Scholar 

  16. Tiwari, A. and Chauhan, S.S., Cardiovasc. Eng. Tech., 2019, vol. 10, p. 155.

    Article  Google Scholar 

  17. Sharma, B.D., Yadav, P.K., and Filippov, A.N., Colloid J., 2017, vol. 79, p. 849.

    Article  CAS  Google Scholar 

  18. Sharma, B.D. and Yadav, P.K., Transport Por. Media, 2017, vol. 120, no. 1, p. 239.

    Article  Google Scholar 

  19. Misra, J.C., Patra, M.K., and Sahu, B.K., Comput. Math. Appl., 1992, vol. 24, p. 19.

    Article  Google Scholar 

  20. Pontrelli, G., Comput. Fluids, 1998, vol. 27, p. 367.

    Article  Google Scholar 

  21. Khadrawi, A.F., Al-Nimr, M.A., and Othman, A., Chem. Eng. Sci., 2005, vol. 60, p. 7131.

    Article  CAS  Google Scholar 

  22. Sankar, D.S. and Lee, U., Commun. Nonlin. Sci., 2010, vol. 15, p. 2086.

    Article  Google Scholar 

  23. Young, D.F., J. Eng. Ind., 1968, vol. 90, p. 248.

    Article  Google Scholar 

  24. Rao, R.A., Acta Mech., 1983, vol. 46, p. 155.

    Article  Google Scholar 

  25. Bugliarello, G., J. Rheol. (NY), 1963, vol. 7, p. 209.

    Google Scholar 

  26. Haynes, R.H., Am. J. Physiol., 1960, vol. 198, p. 1193.

    Article  CAS  Google Scholar 

  27. Blair, G.W., Rheol. Acta, 1972, vol. 11, p. 237.

    Article  Google Scholar 

  28. Charm, S. and Kurland, G.S., Am. J. Physiol., 1962, vol. 203, p. 417.

    Article  CAS  Google Scholar 

  29. Ponalagusamy, R. and Tamil Selvi, R., Meccanica, 2013, vol. 48, p. 2427.

    Article  Google Scholar 

  30. Katritsis, D., Kaiktsis, L., Chaniotis, A., Pantos, J., Efstathopoulos, E.P., and Marmarelis, V., Prog. Cardiovasc. Dis., 2007, vol. 49, p. 307.

    Article  Google Scholar 

  31. Nallapu, S. and Radhakrishnamacharya, G., Int. J. Sci. Eng. Res., 2013, vol. 4, p. 468.

    Google Scholar 

Download references

Funding

First author is thankful to SERB, New Delhi for supporting this research work under the research grant SR/FTP/MS-47/2012.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Filippov.

Ethics declarations

CONFLICT OF INTEREST

The authors declare that they have no conflict of interes-t.

HUMAN PARTICIPANTS OR ANIMALS

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, P.K., Sharma, B.D. & Filippov, A.N. Oscillatory Viscoelastic Model of Blood Flow in Stenotic Artery. Colloid J 82, 617–625 (2020). https://doi.org/10.1134/S1061933X20050178

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X20050178

Navigation