Skip to main content
Log in

Determination of nickel using cold-induced aggregation microextraction based on ionic liquid followed by flame atomic absorption spectrometry

  • Articles
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Cold-induced aggregation microextraction (CIAME) combined with flame atomic absorption spectrometry (FAAS) was applied to preconcentration and determination of nickel(II) ions in natural water samples. The proposed method used 1-hexyl-3-methylimidazolium hexafluorophosphate ([Hmim][PF 6 ]) as the extraction solvent and 1-(2-thiazolylazo)-2-naphthol (TAN) as the complexing agent. The extraction solvent was dissolved in the sample solution at 45°C. After dissolving, the solution was cooled in the ice bath and a cloudy solution of IL fine droplets was formed due to the decrease of IL solubility. After centrifugation, the fine droplets of extractant phase were settled at the bottom of the conical-bottom centrifuge tube. Analysis was carried out by a FAAS. Several important parameters influencing the CIAME extraction efficiency such as pH, complexing agent concentration, extraction solvent volume, salt effect, solution temperature, extraction time, centrifugation time and heating time were investigated and optimized. Under the optimum conditions, the limit of detection (LOD) was 0.8 ng/mL, and the relative standard deviation (RSD) was 3.4% for 50 ng/mL of nickel. The performance of the method was evaluated for extraction and determination of nickel in tap, mineral and seawater samples, and satisfactory results were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Luiz Silva, E., Santos Roldan, P., and Fernanda Gine, M., J. Hazard. Mater., 2009, vol. 171, nos. 1–3, p. 1133.

    Article  Google Scholar 

  2. Lertlapwasin, R., Bhawawet, N., Imyim, A., and Fuangswasdi, S., Sep. Purif. Technol., 2010, vol. 72, no. 1, p. 70.

    Article  CAS  Google Scholar 

  3. Ghaedi, M., Niknam, K., Taheri, K., Hossainian, H., and Soylak, M., Food Chem. Toxicol., 2010, vol. 48, no. 3, p. 891.

    Article  CAS  Google Scholar 

  4. Zerner, B., Bioorg. Chem., 1991, vol. 19, no. 1, p. 116.

    Article  CAS  Google Scholar 

  5. Thauer, R.K., Science, 2001, vol. 293, no. 5533, p. 1264.

    Article  CAS  Google Scholar 

  6. Berger, S.A., Microchem. J., 1993, vol. 47, no. 3, p. 317.

    Article  CAS  Google Scholar 

  7. Lobana T.S. and Bhatia, P.V.K., J. Chem. Sci., 1995, vol. 107, no. 1, p. 35.

    CAS  Google Scholar 

  8. Rengaraj, S., Yeon, K.H., and Moon, S.H., J. Radioanal. Nucl. Chem., 2002, vol. 253, no. 2, p. 241.

    Article  CAS  Google Scholar 

  9. Sahin, C.A., Efecinar, M., and Satiroglu, N., J. Hazard. Mater., 2010, vol. 176, nos. 1–3, p. 672.

    Article  CAS  Google Scholar 

  10. Tuzen, M., and Soylak, M., J. Hazard. Mater., 2009, vol. 164, nos. 2–3, p. 1428.

    Article  CAS  Google Scholar 

  11. Soylak, M., Unsal, Y.E., Aydin, A., and Kizil, N., CLEAN — Soil Air Water, 2010, vol. 38, no. 1, p. 91.

    CAS  Google Scholar 

  12. Baghdadi, M., and Shemirani, F., Anal. Chim. Acta, 2008, vol. 613, no. 1, p. 56.

    Article  CAS  Google Scholar 

  13. Vaezzadeh, M., Shemirani, F., and Majidi, B., Food Chem. Toxicol., 2010, vol. 48, no. 6, p. 1455.

    Article  CAS  Google Scholar 

  14. Weingartner, H., Angew. Chem., Int. Ed. Engl., 2008, vol. 47, no. 4, p. 654.

    Article  Google Scholar 

  15. Aurora, M.C., Juan, H.A., Venerando, G., and Ana, M.A., Anal. Bioanal. Chem., 2009, vol. 394, no. 4, p. 937.

    Article  Google Scholar 

  16. Zhang, H., Cheng, M., and Jiang, X., Chromatographia, 2010, vol. 72, nos. 11–12, p. 1195.

    Article  CAS  Google Scholar 

  17. Martin-Calero, A., Ayala, J.H., Gonzalez, V., and Afonso, A.M., Anal. Bioanal. Chem., 2009, vol. 394, no. 4, p. 937.

    Article  CAS  Google Scholar 

  18. Geng, F., Liu, J., Zheng, L.Q., Yu, L., Li, Z., Li, G.Z., and Tung, C.H., J. Chem. Eng. Data, 2010, vol. 55, no. 1, p. 147.

    Article  CAS  Google Scholar 

  19. Jiang, X., Zhang, H., and Chen, X., Microchim. Acta, 2011, vol. 175, nos. 3–4, p. 341.

    Article  CAS  Google Scholar 

  20. Ezoddin, M., Shemirani, F., Abdi, Kh., Saghezchi, M.K., and Jamali, M.R., J. Hazard. Mater., 2010, vol. 178, nos. 1–3, p. 900.

    Article  CAS  Google Scholar 

  21. Soylak, M., Anal. Lett., 2004, vol. 37, no. 6, p. 1203.

    Article  CAS  Google Scholar 

  22. Molaakbari, E., Mostafavi, A., and Afzali, D., J. Hazard. Mater., 2011, vol. 185, no. 2–3, p. 647.

    Article  CAS  Google Scholar 

  23. Soylak, M., Elci, L., and Dogan, M., J. Trace Microprobe Tech., 1999, vol. 17, p. 149.

    CAS  Google Scholar 

  24. Khani, R., Shemirani, F., and Majidi, B., Desalination, 2011, vol. 266, nos. 1–3, p. 238.

    Article  CAS  Google Scholar 

  25. Soylak, M., Narin, I., and Dogan, M., Anal. Lett., 1997, vol. 30, no. 15, p. 2801.

    CAS  Google Scholar 

  26. Haixi, S., Zaijun, L., and Ming, L., Microchim. Acta, 2007, vol. 159, nos. 1–2, p. 95.

    Article  Google Scholar 

  27. Zhao, Y., Chen, Z., Wang, J., and Zhuo, K., Z. Phys. Chem., 2009, vol. 223, p. 857.

    Article  CAS  Google Scholar 

  28. Safavi, A., Abdollahi, H., Hormozi Nezhad, M.R., and Kamali, R., Spectrochim. Acta A, 2004, vol. 60, no. 12, p. 2897.

    Article  CAS  Google Scholar 

  29. Sahin, C.A., Efecinar, M., and Satiroglu, N., J. Hazard. Mater., 2010, vol. 176, no. 1–3, p. 672.

    Article  CAS  Google Scholar 

  30. Ghaedi, M., Tavallali, H., Shokrollahi, A., Zahedi, M., Montazerozohori, M., and Soylak, M., J. Hazard. Mater., 2009, vol. 166, nos. 2–3, p. 1441.

    Article  CAS  Google Scholar 

  31. Afzali, D. and Mohammadi, S.Z., Environ. Chem. Lett., 2011, vol. 9, no. 1, p. 115.

    Article  CAS  Google Scholar 

  32. Sorouraddin, M.H. and Khoshmaram, L., J. Chin. Chem. Soc., 2010, vol. 57, no. 6, p. 1346.

    CAS  Google Scholar 

  33. Wang, Y., Zhang, J., Zhao, B., Du, X., Ma, J., and Li, J., Biol. Trace Elem. Res., 2011, vol. 144, nos. 1–3, p. 1381.

    Article  CAS  Google Scholar 

  34. Chen, J. and Teo, K.C., Anal. Chim. Acta, 2001, vol. 434, no. 2, p. 325.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamali, M.R., Madadjo, A. & Rahnama, R. Determination of nickel using cold-induced aggregation microextraction based on ionic liquid followed by flame atomic absorption spectrometry. J Anal Chem 69, 426–431 (2014). https://doi.org/10.1134/S1061934814050062

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934814050062

Keywords

Navigation