Skip to main content
Log in

Sample-Specific Metabolites Library with Retention Neighbor: an Improved Identification and Quantitation Strategy for Gas Chromatography–Mass Spectrometry-Based Metabolomics

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

In this study, the idea of sample-specific metabolites library with retention neighbor was presented for better identification and quantitation of metabolites. Compared with universal libraries, the established library was found to have significantly improved match indices (similarity, reverse, and probability), indicating better identification of metabolites. For quantitative metabolic profiling of temperature treated tobacco samples, the established method integrated and aligned 175 metabolites with no missing value, better than the widely used metabolomics software including XCMS Online, MetaboliteDetector, SpectConnect, and ChromaTOF. Partial least squares discriminant analysis models were also used for quantitative evaluation and the established method produced better values of model parameters than the compared software, indicating a better model was established using the present method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Fiehn, O., Plant Mol. Biol., 2002, vol. 48, nos. 1–2, p. 155.

    Article  CAS  Google Scholar 

  2. Kind, T., Wohlgemuth, G., Lee, D.Y., Lu, Y., Palazoglu, M., Shahbaz, S., and Fiehn, O., Anal. Chem., 2009, vol. 81, no. 24, p. 10038.

    Article  CAS  Google Scholar 

  3. Smith, C.A., Want, E.J., O’Maille, G., Abagyan, R., and Siuzdak, G., Anal. Chem., 2006, vol. 78, no. 3, p. 779.

    Article  CAS  Google Scholar 

  4. Hiller, K., Hangebrauk, J., Jager, C., Spura, J., Schreiber, K., and Schomburg, D., Anal. Chem., 2009, vol. 81, no. 9, p. 3429.

    Article  CAS  Google Scholar 

  5. Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., Kanazawa, M., van der Gheynst, J., Fiehn, O., and Arita, M., Nat. Methods, 2015, vol. 12, no. 6, p. 523.

    Article  CAS  Google Scholar 

  6. Tikunov, Y.M., Laptenok, S., Hall, R.D., Bovy, A., and Vos, R.C.H., Metabolomics, 2012, vol. 8, no. 4, p. 714.

    Article  CAS  Google Scholar 

  7. Styczynski, M.P., Moxley, J.F., Tong, L.V., Walther, J.L., Jensen, K.L., and Stephanopoulos, G.N., Anal. Chem., 2007, vol. 79, no. 3, p. 966.

    Article  CAS  Google Scholar 

  8. Warren, C.R., Metabolomics, 2013, vol. 9, no. 1, p. 110.

    Article  CAS  Google Scholar 

  9. Kartsova, L.A. and Solov’eva, S.A., J. Anal. Chem., 2019, vol. 74, no. 4, p. 307.

    Article  CAS  Google Scholar 

  10. Wiley Registry™ of Mass Spectral Data, 12th ed. http://www.sisweb.com/software/wiley-registry.htm. Accessed October 8, 2019.

  11. Lin, S., Liu, N., Yang, Z., Song, W., Wang, P., Chen, H., Lucio, M., Schmitt-Kopplin, P., Chen, G., and Cai, Z., Talanta, 2010, vol. 83, no. 1, p. 262.

    Article  CAS  Google Scholar 

  12. Kopka, J., Schauer, N., Krueger, S., Birkemeyer, C., Usadel, B., Bergmüller, E., Dormann, P., Weckwerth, W., Gibon, Y., Stitt, M., Willmitzer, L., Fernie, A.R., and Steinhauser, D., Bioinformatics, 2005, vol. 21, no. 8, p. 1635.

    Article  CAS  Google Scholar 

  13. Gika, H.G., Macpherson, E., Theodoridis, G.A., and Wilson, I.D., J. Chromatogr. B: Anal. Technol. Biomed. Life Sci., 2008, vol. 871, no. 2, p. 299.

    Article  CAS  Google Scholar 

  14. Gika, H.G., Theodoridis, G.A., Wingate, J.E., and Wilson, I.D., J. Proteome Res., 2007, vol. 6, no. 8, p. 3291.

    Article  CAS  Google Scholar 

  15. Sangster, T., Major, H., Plumb, R., Wilson, A.J., and Wilson, I.D., Analyst, 2006, vol. 131, no. 10, p. 1075.

    Article  CAS  Google Scholar 

  16. Li, Y., Pang, T., Li, Y., Wang, X., Li, Q., Lu, X., and Xu, G., J. Sep. Sci., 2011, vol. 34, no. 12, p. 1447.

    Article  CAS  Google Scholar 

  17. Li, Y., Ruan, Q., Ye, G., Lu, X., Lin, X., and Xu, G., J. Chromatogr. A, 2012, vol. 1255, p. 228.

    Article  CAS  Google Scholar 

  18. Lisec, J., Schauer, N., Kopka, J., Willmitzer, L., and Fernie, A.R., Nat. Protoc., 2006, vol. 1, no. 1, p. 387.

    Article  CAS  Google Scholar 

  19. Lee, D.Y. and Fiehn, O., Plant Methods, 2008, vol. 406, no. 28, p. 7275.

    Google Scholar 

  20. Fiehn, O., TrAC, Trends Anal. Chem., 2008, vol. 27, no. 3, p. 261.

    Article  CAS  Google Scholar 

  21. Szopa, J., Wilczyński, G., Fiehn, O., Wenczel, A., and Willmitzer, L., Phytochemistry, 2001, vol. 58, no. 2, p. 315.

    Article  CAS  Google Scholar 

  22. Fiehn, O., Phytochemistry, 2003, vol. 62, no. 6, p. 875.

    Article  CAS  Google Scholar 

  23. Li, Y., Pang, T., Li, Y., Ye, G., Lu, X., and Xu, G., J. Sep. Sci., 2013, vol. 36, nos. 9–10, p. 1545.

    Article  CAS  Google Scholar 

  24. Golm Metabolome Database. http://gmd.mpimp-golm.mpg.de. Accessed October 8, 2019.

  25. Mass Spectrometry Data Center. http://chemdata.nist. gov/mass-spc/ms-search/docs/Ver20Man_11.pdf. Accessed October 8, 2019.

  26. Vandendool, H. and Kratz, P.D., J. Chromatogr., 1963, vol. 11, no. 4, p. 463.

    Article  CAS  Google Scholar 

  27. XCMS, The original and most widely used metabolomic platform. https://xcmsonline.scripps.edu/landing_page.php?pgcontent=mainPage. Accessed October 8, 2019.

  28. Benton, H.P., Wong, D.M., Trauger, S.A., and Siuzdak, G., Anal. Chem., 2008, vol. 80, no. 16, p. 6382.

    Article  CAS  Google Scholar 

  29. Gowda, H., Ivanisevic, J., Johnson, C.H., Kurczy, M.E., Benton, H.P., Rinehart, D., Nguyen, T., Ray, J., Kuehl, J., Arevalo, B., Westenskow, P.D., Wang, J., and Arkin, A.P., Anal. Chem., 2014, vol. 86, no. 14, p. 6931.

    Article  CAS  Google Scholar 

  30. Wang, B., Fang, A., Heim, J., Bogdanov, B., Pugh, S., Libardoni, M., and Zhang, X., Anal. Chem., 2010, vol. 82, no. 12, p. 5069.

    Article  CAS  Google Scholar 

  31. Koh, Y., Pasikanti, K.K., Yap, C.W., and Chan, E.C., J. Chromatogr. A, 2010, vol. 1217, no. 52, p. 8308.

    Article  CAS  Google Scholar 

  32. Lu, H., Dunn, W.B., Shen, H., Kell, D.B., and Liang, Y., TrAC, Trends Anal. Chem., 2008, vol. 27, no. 3, p. 215.

    Article  CAS  Google Scholar 

  33. Gromski, P.S., Muhamadali, H., Ellis, D.I., Xu, Y., Correa, E., Turner, M.L., and Goodacre, R., Anal. Chim. Acta, 2015, vol. 879, p. 10.

    Article  CAS  Google Scholar 

  34. Multi- and Megavariate Data Analysis. Part I: Basic Principles and Applications, Eriksson, L., Johansson, E., Kettaneh-Wold, N., Trygg, J., Wikstrom, C., and Wold, S., Eds., Stockholm: UMETRICS AB, 2006.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the staff of the chemistry research center of Yunnan academy of tobacco agricultural sciences for their important contributions.

Funding

The study was supported by the foundation (nos. 20185300002410027 and 2018530000241007) from China National Tobacco Company Yunnan branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Pang.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yong Li, Pang, T., Shi, JL. et al. Sample-Specific Metabolites Library with Retention Neighbor: an Improved Identification and Quantitation Strategy for Gas Chromatography–Mass Spectrometry-Based Metabolomics. J Anal Chem 76, 844–853 (2021). https://doi.org/10.1134/S1061934821070108

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934821070108

Keywords:

Navigation