Skip to main content
Log in

Structure of the yolk syncytial layer in Teleostei and analogous structures in animals of the meroblastic type of development

  • Conference Materials
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The structure of the yolk syncytial layer (YSL) of the larvae of two cyprinids, Danio rerio and Cyprinus carpio koi, has been studied by transmission electron microscopy and by the histological methods. The structure of the YSL of these taxonomically related species of Teleostei is characterized by both similarity and dissimilarity in particular features, related to the overall shape of YSL, functional regionalization, and programmed death. Original and published data on the morphofunctional structure of the YSL have been discussed for representatives of Teleostei, Myxini, Chondrichthyes, Lepisosteiformes and Cephalopoda.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balon, E.K., Origin and domestication of the wild carp, Cyprinus carpio: from roman gourmets to the swimming flowers, Aquaculture, 1995, vol. 129, nos. 1–4, pp. 3–48.

    Article  Google Scholar 

  • Boletzky, S.V., A contribution to the study of yolk absorption in the Cephalopoda, Z. Morph. Tiere, 1975, vol. 80, no. 3, pp. 229–246.

    Article  Google Scholar 

  • Boletzky, S.V., Yolk sac morphology in cephalopod embryos, Abh. Geol., 2002, vol. 57, pp. 57–68.

    Google Scholar 

  • Carvalho, L. and Heisenberg, C.-P., The yolk syncytial layer in early zebrafish development, Trends Cell Biol., 2010, vol. 20, no. 10, pp. 586–592.

    Article  CAS  PubMed  Google Scholar 

  • Chu, L.T., Fong, S.H., Kondrychyn, I., Loh, S.L., Ye, Z., and Korzh, V., Yolk syncytial layer formation is a failure of cytokinesis mediated by Rock1 function in the early zebrafish embryo, Biol. Open, 2012, vol. 1, no. 8, pp. 747–753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faas, F.G., Avramut, M.C., van der Berg, B.M., Mommaas, A.M., Koster, A.J., and Ravelli, R.B., Virtual nanoscopy: generation of ultra-large high resolution electron microscopy maps, J. Cell Biol., 2012, vol. 198, no. 3, pp. 457–469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Finn, R.N. and Fyhn, H.J., Requirement for amino acids in ontogeny of fish, Aquac. Res., 2010, vol. 41, no. 5, pp. 684–716.

    Article  CAS  Google Scholar 

  • Fuentes, R. and Fernandez, J., Ooplasmic segregation in the zebrafish zygote and early embryo: pattern of ooplasmic movements and transport pathways, Dev. Dyn., 2010, vol. 239, no. 8, pp. 2172–2189.

    Article  PubMed  Google Scholar 

  • Hamlett, W.C., Comparative morphology of the elasmobranch placental barrier, Arch. Biol. (Bruxelles), 1987, vol. 98, no. 2, pp. 135–162.

    Google Scholar 

  • He, S., Mayden, R.L., Wang, X., Wang, W., Tang, K.L., Chen, W.J., and Chen, Y., Molecular phylogenetics of the family Cyprinidae (Actinopterygii: Cypriniformes) as evidenced by sequence variation in the first intron of S7 ribosomal protein-coding gene: further evidence from a nuclear gene of the systematic chaos in the family, Mol. Phylogen. Evol., 2008, vol. 46, no. 3, pp. 818–829.

    Article  CAS  Google Scholar 

  • Huttenhuis, H.B.T., Grou, C.P.O., Taverne-Thiele, A.J., Taverne, N., and Rombout, J.H., Carp (Cyprinus carpio L.) innate immune factors are present before hatching, Fish Shellfish Immunol., 2006, vol. 20, no. 4, pp. 586–596.

    Article  CAS  PubMed  Google Scholar 

  • Ivanova-Kazas, O.M., Evolyutsionnaya embriologiya zhivotnykh (Evolutionary Embryology of Animals), St. Petersburg: Nauka, 1995.

    Google Scholar 

  • Jaroszewska, M. and Dabrowski, K., Utilization of yolk: transition from endogenous to exogenous nutrition in fish, in Larval Fish Nutrition, Holt, G.J., Ed., Oxford, UK: Wiley-Blackwell, 2011, pp. 183–218.

    Chapter  Google Scholar 

  • Kageyama, T., Polyploidization of nuclei in the yolk syncytial layer of the embryo of the medaka, Oryzias latipes, after the halt of mitosis, Dev. Growth Differ., 1996, vol. 38, no. 2, pp. 119–127.

    Article  Google Scholar 

  • Kimmel, C.B. and Law, R.D., Cell lineage of zebrafish blastomeres. II. Formation of the yolk syncytial layer, Dev. Biol., 1985, vol. 108, no. 1, pp. 86–93.

    Article  CAS  PubMed  Google Scholar 

  • Kimmel, C.B., Ballard, W.W., Kimmel, S.R., Ullmann, B., and Schilling, T.F., Stages of embryonic development of the zebrafish, Dev. Dyn., 1995, vol. 203, no. 3, pp. 253–310.

    Article  CAS  PubMed  Google Scholar 

  • Kondakova, E.A. and Efremov, V.I., Morphofunctional transformations of the yolk syncytial layer during zebrafish development, J. Morphol., 2014a, vol. 275, no. 2, pp. 206–216.

    Article  CAS  PubMed  Google Scholar 

  • Kondakova, E.A. and Efremov, V.I., The ultrastructure of the larval zebrafish YSL. Book of Abstracts, Heart of Europe: Zebrafish Meeting, September 17–19, 2014, Warsaw, Warsaw: Int. Inst. Mol. Cell Biol., 2014b, p. 25.

    Google Scholar 

  • Kunz, Y.W., Developmental Biology of Teleost Fishes, Dublin: Springer, 2004.

    Book  Google Scholar 

  • Lechenault, H. and Mellinger, J., Dual origin of yolk nuclei in the lesser spotted dogfish, Scyliorhinus canicula (Chondrichthyes), J. Exp. Zool., 1993, vol. 265, no. 6, pp. 669–678.

    Article  Google Scholar 

  • Lepage, S.E. and Bruce, A.E., Zebrafish epiboly: mechanics and mechanisms, Int. J. Dev. Biol., 2010, vol. 54, nos. 8–9, pp. 1213–1228.

    Article  CAS  PubMed  Google Scholar 

  • Long, W.L. and Ballard, W.W., Normal embryonic stages of the longnose gar, Lepisosteus osseus, BMC Dev. Biol., 2001, vol. 1, p. 6.

    Article  CAS  PubMed  Google Scholar 

  • Mani-Ponset, L., Guyot, E., Diaz, J.P., and Connes, R., Utilization of yolk reserves during post-embryonic development in three teleostean species: the sea bream Sparus aurata, the sea bass Dicentrarchus labrax and the pike-perch Stizostedion lucioperca, Mar. Biol. (Berlin), 1996, vol. 126, no. 3, pp. 539–547.

    Article  CAS  Google Scholar 

  • Marthy, H.J. and Dale, B., Dye-coupling in the early squid embryo, Roux’s Arch. Dev. Biol. (Dev. Genes Evol.), 1989, vol. 198, no. 4, pp. 211–218.

    Article  Google Scholar 

  • Segmuller, M. and Marthy, H.J., Individual migration of mesentodermal cells in the early embryo of the squid Loligo vulgaris: in vivo recordings combined with observations with TEM and SEM, Int. J. Dev. Biol., 1989, vol. 33, no. 2, pp. 287–295.

    CAS  PubMed  Google Scholar 

  • Shimizu, M. and Yamada, J., Ultrastructural aspects of yolk absorption in the vitelline syncytium of the embryonic rockfish, Sebastes schlegeli, Jap. J. Ichthyol., 1980, vol. 27, no. 1, pp. 56–63.

    Google Scholar 

  • Singley, C.T., An analysis of gastrulation in Loligo Pealei, Ph.D. Thesis, Honolulu: Univ. Hawaii, 1977.

    Google Scholar 

  • Takesono, A., Moger, J., Farooq, S., Cartwright, E., Dawid, I.B., Wilson, S.W., and Kudoh, T., Solute carrier family 3 member 2 (Slc3a2) controls yolk syncytial layer (YSL) formation by regulating microtubule networks in the zebrafish embryo, Proc. Natl. Acad. Sci. U. S. A., 2012, vol. 109, no. 9, pp. 3371–3376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsai, H.Y., Chang, M., Liu, S.C., Abe, G., and Ota, K.G., Embryonic development of goldfish (Carassius auritus): a model for the study of evolutionary change in developmental mechanisms by artificial selection, Dev. Dyn., 2013, vol. 242, no. 11, pp. 1262–1283.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wadeson, P.H. and Crawford, K., Formation of the blastoderm and yolk syncytial layer in early squid development, Biol. Bull., 2003, vol. 205, no. 2, pp. 179–180.

    Article  CAS  PubMed  Google Scholar 

  • Walzer, C. and Schönenberger, N., Ultrastructure and cytochemistry study of the yolk syncytial layer in the alevin of trout (Salmo fario trutta L.) after hatching. I. The vitellolysis zone, Cell Tiss. Res., 1979, vol. 196, no. 1, pp. 59–73.

    CAS  Google Scholar 

  • Williams, D.W., Muller, F., Lavender, F.L., Orban, L., and Maclean, N., High transgene activity in the yolk syncytial layer affects quantitative transient expression assays in zebrafish (Danio rerio) embryos, Transgenic Res., 1996, vol. 5, no. 6, pp. 433–442.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kondakova.

Additional information

Original Russian Text © E.A. Kondakova, V.I. Efremov, V.A. Nazarov, 2016, published in Izvestiya Akademii Nauk, Seriya Biologicheskaya, 2016, No. 3, pp. 256–264.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondakova, E.A., Efremov, V.I. & Nazarov, V.A. Structure of the yolk syncytial layer in Teleostei and analogous structures in animals of the meroblastic type of development. Biol Bull Russ Acad Sci 43, 208–215 (2016). https://doi.org/10.1134/S1062359016030055

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359016030055

Navigation