Skip to main content
Log in

Interstellar Extinction in Galactic Cirri in SDSS Stripe 82

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

We have applied the method of star counts with Wolf diagrams to determine the interstellar extinction in five Galactic cirri in Sloan Digital Sky Survey (SDSS) Stripe 82. For this purpose, we have used the photometry of stars in the GALEX NUV filter and the photometry of red dwarfs in five SDSS bands and four SkyMapper Southern Sky Survey DR2 bands. We have identified the cirri as sky regions with an enhanced infrared emission from the Schlegel+1998 map. The extinction in them has been calculated relative to the nearby comparison regions with a reduced emission. The results for different filters agree well, giving the range of distances and the extinction law for each cirrus. The distances in the range 140–415 pc found are consistent with the 3D reddening maps. In the range between the \(B\) and \(V\) filters the extinctions found are consistent with the estimates from Schlegel+1998 for the Cardelli+1989 extinction law with \(R_{\mathrm{V}}=3.1\). However, the extinctions found for all of the filters are best described not by the Cardelli+1989 extinction law with some \(R_{\mathrm{V}}\), but by the inverse proportionality of the extinction and wavelength with its own coefficient for each cirrus. In one of the cirri our results suggest a very slight decrease in extinction with wavelength, i.e., a large contribution of gray extinction. In the remaining cirri a manifestation of gray extinction is not ruled out either. This is consistent with the previous measurements of the extinction law far from the Galactic midplane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. https://cdsarc.cds.unistra.fr/viz-bin/cat/II/335

  2. https://skymapper.anu.edu.au

  3. https://cdsarc.cds.unistra.fr/viz-bin/cat/J/MNRAS/456/ 1359

  4. http://stev.oapd.inaf.it/cgi-bin/trilegal

  5. http://stev.oapd.inaf.it/cgi-bin/cmd_3.6

  6. https://cdsarc.cds.unistra.fr/viz-bin/cat/J/PAZh/43/521

  7. http://argonaut.skymaps.info/

  8. https://cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/661/A147

  9. This gives qualitatively the same separation as does the criterion \(g_{\mathrm{SDSS}}-r_{\mathrm{SDSS}}>1.2\). The difference in the numbers is caused by the difference between the \(g_{\mathrm{SDSS}}\) and \(g_{\mathrm{SMSS}}\) filters.

  10. http://kcor.sai.msu.ru/

  11. The structure of the cirri is discussed by Marchuk et al. (2021). Panopoulou et al. (2022) showed that the characteristic thickness of a molecular cloud filament is 0.1 pc, implying \(1.5^{\prime}\textrm{--}2^{\prime}\) for the cirri considered by us. Panopoulou et al. (2022) used meaningful data, but made a methodological error that they corrected in the Corrigendum to their paper.

REFERENCES

  1. L. Bianchi, B. Shiao, and D. Thilker, Astrophys. J. Suppl. Ser. 230, 24 (2017).

    Article  ADS  Google Scholar 

  2. A. I. Bogomazov and A. V. Tutukov, Astron. Rep. 55, 497 (2011).

    Article  ADS  Google Scholar 

  3. C. Bottrell, L. Simard, J. T. Mendel, and S. L. Ellison, Mon. Not. R. Astron. Soc. 486, 390 (2019).

    Article  ADS  Google Scholar 

  4. A. Bressan, P. Marigo, L. Girardi, B. Salasnich, C. Dal Cero, S. Rubele, and A. Nanni, Mon. Not. R. Astron. Soc. 427, 127 (2012).

    Article  ADS  Google Scholar 

  5. D. Burger, K. G. Stassun, J. Pepper, R. J. Siverd, M. Paegert, N. M. De Lee, and W. H. Robinson, Astron. Comput. 2, 40 (2013).

    Article  ADS  Google Scholar 

  6. N. Caon, M. Capaccioli, and M. D’Onofrio, Mon. Not. R. Astron. Soc. 265, 1013 (1993).

    Article  ADS  Google Scholar 

  7. J. A. Cardelli, G. C. Clayton, and J. S. Mathis, Astrophys. J. 345, 245 (1989).

    Article  ADS  Google Scholar 

  8. I. V. Chilingarian and I. Yu. Zolotukhin, Mon. Not. R. Astron. Soc. 419, 1727 (2012).

    Article  ADS  Google Scholar 

  9. I. V. Chilingarian, A.-L. Melchior, and I. Yu. Zolotukhin, Mon. Not. R. Astron. Soc. 405, 1409 (2010).

    Article  ADS  Google Scholar 

  10. I. V. Chilingarian, I. Yu. Zolotukhin, I. Yu. Katkov, A.-L. Melchior, E. V. Rubtsov, and K. A. Grishin, Astrophys. J. Suppl. Ser. 228, 14 (2017).

    Article  ADS  Google Scholar 

  11. J. R. A. Davenport, Z. Ivezic, A. C. Becker, J. J. Ruan, N. M. Hunt-Walker, K. R. Covey, A. R. Lewis, Y. AlSayyad, and L. M. Anderson, Mon. Not. R. Astron. Soc. 440, 3430 (2014).

    Article  ADS  Google Scholar 

  12. J. Fliri and I. Trujillo, Mon. Not. R. Astron. Soc. 456, 1359 (2016).

    Article  ADS  Google Scholar 

  13. L. Girardi, M. A. T. Groenewegen, E. Hatziminaoglou, and L. da Costa, Astron. Astrophys. 436, 895 (2005).

    Article  ADS  Google Scholar 

  14. G. A. Gontcharov, Astron. Lett. 38, 12 (2012).

    Article  ADS  Google Scholar 

  15. G. A. Gontcharov, Astron. Lett. 39, 550 (2013).

    Article  ADS  Google Scholar 

  16. G. A. Gontcharov, Astron. Lett. 42, 445 (2016a).

    Article  ADS  Google Scholar 

  17. G. A. Gontcharov, Astrophysics 59, 548 (2016b).

    Article  ADS  Google Scholar 

  18. G. A. Gontcharov, Astron. Lett. 43, 472 (2017a).

    Article  ADS  Google Scholar 

  19. G. A. Gontcharov, Stars: From Collapse to Collapse, Proceedings of a Conference, Special Astrophysical Observatory, Nizhny Arkhyz, Ed. by Yu. Yu. Balega, D. O. Kudryavtsev, I. I. Romanyuk, and I. A. Yakunin, ASP Conf. Ser. 510, 71 (2017b).

  20. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 472, 3805 (2017).

    Article  ADS  Google Scholar 

  21. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 475, 1121 (2018).

    Article  ADS  Google Scholar 

  22. G. A. Gontcharov and A. V. Mosenkov, Mon. Not. R. Astron. Soc. 500, 2590 (2021).

    Article  ADS  Google Scholar 

  23. E. Gorbikov and N. Brosch, Mon. Not. R. Astron. Soc. 401, 231 (2010).

    Article  ADS  Google Scholar 

  24. G. M. Green, E. F. Schlafly, C. Zucker, J.S.Speagle, and D. P. Finkbeiner, Astrophys. J. 887, 93 (2019).

    Article  ADS  Google Scholar 

  25. P. P. Kulikovskii, Stellar Astronomy (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  26. R. Lallement, J. L. Vergely, C. Babusiaux, and N. L. J. Cox, Astron. Astrophys. 661, A147 (2022).

    Article  ADS  Google Scholar 

  27. A. A. Marchuk, A. A. Smirnov, A. V. Mosenkov, V. B. Il’in, G. A. Gontcharov, S. S. Savchenko, and J. Roman, Mon. Not. R. Astron. Soc. 508, 5825 (2021).

    Article  ADS  Google Scholar 

  28. D. C. Martin, J. Fanson, D. Schiminovich, P. Morrissey, P. G. Friedman, T. A. Barlow, T. Conrow, R. Grange, P. N. Jelinsky, et al., Astrophys. J. 619, L1 (2005).

    Article  ADS  Google Scholar 

  29. A. M. Meisner and D. P. Finkbeiner, Astrophys. J. 798, 88 (2015).

    Article  ADS  Google Scholar 

  30. C. A. Onken, C. Wolf, M. S. Bessell, S. W. Chang, G. S. da Costa, L. C. Luvaul, D. Mackey, B. P. Schmidt, and L. Shao, Publ. Astron. Soc. Austral. 36, 33 (2019).

    Article  ADS  Google Scholar 

  31. G. V. Panopoulou, S. E. Clark, A. Hacar, F. Heitsch, J. Kainulainen, E. Ntormousi, D. Seifried, and R. J. Smith, Astron. Astrophys. 663, C1 (2022).

    Article  Google Scholar 

  32. P. P. Parenago, Course of Stellar Astronomy (GITTL, Moscow, 1954) [in Russian].

    Google Scholar 

  33. Planck Collab., Astron. Astrophys. 571, A11 (2014).

    Article  Google Scholar 

  34. D. J. Schlegel, D. P. Finkbeiner, and M. Davis, Astrophys. J. 500, 525 (1998).

    Article  ADS  Google Scholar 

  35. I. Strateva, Z. Ivezic, G. R. Knapp, V. K. Narayanan, M. A. Strauss, J. E. Gunn, R. H. Lupton, D. Schlegel, N. A. Bahcall, et al., Astron. J. 122, 1861 (2001).

    Article  ADS  Google Scholar 

  36. A. Szomoru and P. Guhathakurta, Astron. J. 117, 2226 (1999).

    Article  ADS  Google Scholar 

  37. G. H. de Vaucouleurs, Ann. d’Astrophys. 11, 247 (1948).

    ADS  Google Scholar 

  38. M. Wolf, Astron. Nachr. 219, 109 (1923).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (project no. 20-72-10052). We thank M. Khovrichev for his help in accessing the Internet resources, T. Rakhmatulina and S. Antonov for their help in accessing the SkyMapper Southern Sky Survey data, and the referees for their useful remarks.

In this study we used resources from the Strasbourg Astronomical Data Center (http://cdsweb.u-strasbg.fr), including the SIMBAD database and the X-Match service. This study uses the Filtergraph online data visualization system (Burger et al. 2013, https://filtergraph.com). This study is based on data from the Sloan Digital Sky Survey (http://www.sdss3.org/). We used digital products from the SkyMapper Southern Sky Survey (https://skymapper.anu.edu.au), which belongs to and is operated by the Research School of Astronomy and Astrophysics at the Australian National University. The study uses the K-corrections calculator accessible at http://kcor.sai.msu.ru/ and data from Galaxy Evolution Explorer, GALEX, one of the NASA missions operated by the Jet Propulsion Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Gontcharov.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gontcharov, G.A., Mosenkov, A.V., Savchenko, S.S. et al. Interstellar Extinction in Galactic Cirri in SDSS Stripe 82. Astron. Lett. 48, 503–516 (2022). https://doi.org/10.1134/S1063773722090031

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773722090031

Keywords:

Navigation