Skip to main content
Log in

UPS and EELS study of zirconium oxidation

  • Electronic Properties of Solids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The electronic structures of metallic zirconium, zirconium oxide, and zirconium surfaces with intermediate degrees of oxidation have been studied by photoemission spectroscopy using synchrotron radiation and by electron energy loss spectroscopy. Both methods are used to analyze the same samples in one experimental cycle. Some specific features of the electronic structures that had not been detected earlier are revealed. The experimental data obtained are explained using the first-principles calculations of the electronic states of hcp metallic zirconium and cubic or monoclinic zirconia. The dielectric function and the electron-energy-loss function are calculated for comparison with the experimental data. Despite certain quantitative differences, the experimental and calculated data on the electronic structures of zirconium and its oxide are in good qualitative agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. G. Bednorz and K. A. Müller, Z. Phys. B 64, 189 (1986).

    Article  ADS  Google Scholar 

  2. V. G. Nazin, M. B. Tsetlin, M. N. Mikheeva, et al., Poverkhnost, No. 9, 102 (1996).

  3. M. N. Mikheeva, V. G. Nazin, and A. S. Kiparoidze, Fiz. Tverd. Tela (St. Petersburg) 45, 1329 (2003) [Phys. Solid State 45, 1329 (2003)].

    Google Scholar 

  4. A. I. Kingon, J. P. Maria, and S. K. Streier, Nature 406, 1032 (2000).

    Article  Google Scholar 

  5. D. E. Eastman, Solid State Commun. 7, 1697 (1969).

    Article  ADS  Google Scholar 

  6. I. Buribayev, N. A. Nurmatov, and N. Talipov, Turk. J. Phys. 23, 463 (1999).

    ADS  Google Scholar 

  7. T. L. Loucks, Phys. Rev. 159, 544 (1967).

    Article  ADS  Google Scholar 

  8. Z.-W. Lu, D. Singh, and H. Krakauer, Phys. Rev. B 36, 7335 (1987).

    Article  ADS  Google Scholar 

  9. C. Morant, A. Fernandez, A. R. Gonzalez-Elipe, et al., Phys. Rev. B 52, 11711 (1995).

    Article  ADS  Google Scholar 

  10. P. Camagni, G. Samoggia, L. Sangaletti, et al., Phys. Rev. B 50, 4292 (1994).

    Article  ADS  Google Scholar 

  11. R. H. French, S. J. Glass, F. S. Ohuchi, et al., Phys. Rev. B 49, 5133 (1994).

    Article  ADS  Google Scholar 

  12. R. Orlando, C. Pisani, C. Roetti, and E. V. Stefanovich, Phys. Rev. B 45, 592 (1992).

    Article  ADS  Google Scholar 

  13. H. J. F. Jansen, Phys. Rev. B 43, 7267 (1991).

    Article  ADS  Google Scholar 

  14. G. A. Ol’khovich, I. I. Naumov, and O. I. Velikokhatnyi, J. Phys.: Condens. Matter 7, 1273 (1995).

    Article  ADS  Google Scholar 

  15. B. Kralik, E. Chang, and S. G. Louie, Phys. Rev. B 57, 7027 (1998).

    Article  ADS  Google Scholar 

  16. M. S. Lynch and J. B. Swan, Aust. J. Phys. 21, 811 (1968).

    ADS  Google Scholar 

  17. G. R. Corallo, D. A. Asbury, R. E. Gilbert, and G. B. Hoflund, Phys. Rev. B 35, 9451 (1987).

    Article  ADS  Google Scholar 

  18. I. I. Mazin, E. G. Maksimov, S. N. Rashkeev, and Yu. A. Uspenskiĭ, Zh. Éksp. Teor. Fiz. 90, 1092 (1986) [Sov. Phys. JETP 63, 637 (1986)].

    Google Scholar 

  19. D. W. McComb, Phys. Rev. B 54, 7094 (1996).

    Article  ADS  Google Scholar 

  20. L. K. Dash, N. Vast, P. Baranek, et al., Phys. Rev. B 70, 245116 (2004).

  21. I. I. Naumov, O. I. Velikokhatnyĭ, G. A. Ol’khovik, and N. N. Aparov, Fiz. Tverd. Tela (St. Petersburg) 34, 1015 (1992) [Sov. Phys. Solid State 34, 543 (1992)].

    Google Scholar 

  22. M. N. Mikheeva, V. G. Nazin, M. Y. Kuznetsov, et al., in BESSY-Annual Report 2002 (Berliner Elektronenspeicherung-Gesellschaft für Synchrotronstrahlung m.b.H., Berlin, 2002), p. 129.

    Google Scholar 

  23. Yu. A. Teterin and A. Yu. Teterin, Usp. Khim. 73, 588 (2004).

    Google Scholar 

  24. H. R. Moser, B. Delley, W. D. Schneider, and Y. Baer, Phys. Rev. B 6, 2947 (1984).

    Article  ADS  Google Scholar 

  25. S. Miyazaki, M. Narasaki, M. Ogasavara, and M. Hirose, Solid-State Electron. 46, 1679 (2002).

    Article  ADS  Google Scholar 

  26. P. Hohenberg and W. Kohn, Phys. Rev. [Sect. B] 136, 864 (1964).

    Article  MathSciNet  ADS  Google Scholar 

  27. W. Kohn and L. J. Sham, Phys. Rev. [Sect. A] 140, 1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  28. W. Kohn, Usp. Fiz. Nauk 172, 336 (2002).

    Article  Google Scholar 

  29. P. Blaha, K. Schwarz, G. K. H. Madsen, et al., WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties (Karlheinz Schwarz, Tech. Univ. Wien, Austria, 2001), ISBN 3-9501031-1-2.

    Google Scholar 

  30. J. Braun, Rep. Prog. Phys. 59, 1267 (1996).

    Article  ADS  Google Scholar 

  31. E. G. Maksimov and S. Yu. Savrasov, Usp. Fiz. Nauk 160(9), 155 (1990) [Sov. Phys. Usp. 33, 763 (1990)].

    Google Scholar 

  32. I. Lindau and W. E. Spicer, J. Electron Spectrosc. Relat. Phenom. 3, 409 (1974).

    Article  Google Scholar 

  33. E. V. Stefanovich, A. L. Shluger, and C. R. Catlow, Phys. Rev. B 49, 11560 (1994).

    Article  ADS  Google Scholar 

  34. M. Jouanne, J. F. Morhange, M. A. Kanehisa, et al., Phys. Rev. B 64, 155404 (2004).

    Google Scholar 

  35. J. J. Yeh and I. Lindau, At. Data Nucl. Data Tables 32, 1 (1985).

    Article  ADS  Google Scholar 

  36. J. G. Chen, Surf. Sci. Rep. 30, 1 (1997).

    Article  MATH  ADS  Google Scholar 

  37. L. Soriano, M. Abbate, J. C. Fuggle, et al., Solid State Commun. 87, 699 (1993).

    Article  ADS  Google Scholar 

  38. S. Munnix and M. Scmeits, Phys. Rev. B 31, 3369 (1985).

    Article  ADS  Google Scholar 

  39. D. W. Lynch, C. G. Olsen, and J. H. Weaver, Phys. Rev. B 11, 3617 (1975).

    Article  ADS  Google Scholar 

  40. N. Thromat, C. Noguera, M. Gautier, et al., Phys. Rev. B 44, 7904 (1991).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © M.N. Mikheeva, V.G. Nazin, M.Yu. Kuznetsov, E.G. Maksimov, S.S. Vasilevskiĭ, M.V. Magnitskaya, 2006, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2006, Vol. 129, No. 3, pp. 517–532.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikheeva, M.N., Nazin, V.G., Kuznetsov, M.Y. et al. UPS and EELS study of zirconium oxidation. J. Exp. Theor. Phys. 102, 453–465 (2006). https://doi.org/10.1134/S1063776106030083

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776106030083

PACS numbers

Navigation