Skip to main content
Log in

Shear viscosity of glass-forming melts in the liquid-glass transition region

  • Statistical, Nonlinear, and Soft Matter Physics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

A new approach to interpreting the hole-activation model of a viscous flow of glass-forming liquids is proposed. This model underlies the development of the concept on the exponential temperature dependence of the free energy of activation of a flow within the range of the liquid-glass transition in complete agreement with available experimental data. The “formation of a fluctuation hole” in high-heat glass-forming melts is considered as a small-scale low-activation local deformation of a structural network, i.e., the quasi-lattice necessary for the switching of the valence bond, which is the main elementary event of viscous flow of glasses and their melts. In this sense, the hole formation is a conditioned process. A drastic increase in the activation free energy of viscous flow in the liquid-glass transition region is explained by a structural transformation that is reduced to a limiting local elastic deformation of the structural network, which, in turn, originates from the excitation (critical displacement) of a bridging atom like the oxygen atom in the Si-O-Si bridge. At elevated temperatures, as a rule, a necessary amount of excited bridging atoms (locally deformed regions of the structural network) always exists, and the activation free energy of viscous flow is almost independent of temperature. The hole-activation model is closely connected with a number of well-known models describing the viscous flow of glass-forming liquids (the Avramov-Milchev, Nemilov, Ojovan, and other models).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Nemilov, Thermodynamic and Kinetic Aspects of the Vitreous State (CRC Press, Boca Raton, FL, United States, 1995).

    Google Scholar 

  2. M. I. Ojovan, Adv. Condens. Matter Phys., Article ID 817 829 (2008).

  3. I. Avramov, J. Non-Cryst. Solids 351, 3163 (2005).

    Article  ADS  Google Scholar 

  4. R. H. Doremus, J. Appl. Phys. 92, 7619 (2002).

    Article  ADS  Google Scholar 

  5. M. I. Ojovan, K. P. Travis, and R. J. Hand, J. Phys.: Condens. Matter 19, 415 107 (2007).

    Article  Google Scholar 

  6. J. C. Dure, N. B. Olsen, and T. Christensen, Phys. Rev. B: Condens. Matter 53, 2171 (1996).

    ADS  Google Scholar 

  7. V. L. Maksimov, Vysokomol. Soedin., Ser. A 36, 1156 (1994).

    Google Scholar 

  8. R. L. Myuller, Zh. Prikl. Khim. (Leningrad) 28, 1077 (1955).

    Google Scholar 

  9. V. N. Filipovich, Fiz. Khim. Stekla 1, 256 (1975).

    Google Scholar 

  10. D. S. Sanditov, Fiz. Khim. Stekla 2, 515 (1976).

    Google Scholar 

  11. S. V. Nemilov, Fiz. Khim. Stekla 18(1), 3 (1992) [Sov. J. Glass Phys. Chem. 18 (1), 1 (1992)].

    Google Scholar 

  12. S. V. Nemilov, Fiz. Khim. Stekla 4, 662 (1978).

    Google Scholar 

  13. R. W. Douglas, Nature (London) 158, 415 (1946).

    Article  ADS  Google Scholar 

  14. H. T. Smyth, J. R. Finlayson, and H. F. Remde, in Proceedings of the Fourth International Congress on Glass, Paris, France, 1956 (Paris, 1956), p. 209.

  15. R. L. Myuller, in Vitreous State (Academy of Sciences of the Soviet Union, Moscow, 1960), p. 61 [in Russian].

    Google Scholar 

  16. M. I. Ozhovan, Zh. Éksp. Teor. Fiz. 130(5), 944 (2006) [JETP 103 (5), 819 (2006)].

    Google Scholar 

  17. H. Tanaka, J. Non-Cryst. Solids 351, 3371 (2005).

    Article  ADS  Google Scholar 

  18. C. F. Schuh, T. C. Hufnagel, and U. Ramamurty, Acta Mater. 55, 4067 (2007).

    Article  Google Scholar 

  19. C. A. Angell and K. J. Rao, J. Chem. Phys. 57, 47 (1972).

    Article  Google Scholar 

  20. D. S. Sanditov, Dokl. Akad. Nauk 390(1–3), 209 (2003) [Dokl. Phys. Chem. 390 (1–3), 122 (2003)].

    MATH  Google Scholar 

  21. D. S. Sanditov, Zh. Éksp. Teor. Fiz. 135(1), 108 (2009) [JETP 108 (1), 98 (2009)].

    Google Scholar 

  22. D. S. Sanditov and G. M. Bartenev, Physical Properties of Disordered Structures (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  23. J. Frenkel, Kinetic Theory of Liquids (Academy of Sciences of the Soviet Union, Moscow, 1945; Oxford University Press, Oxford, 1946).

    Google Scholar 

  24. S. Glasstone, K. Laidler, and H. Eyring, The Theory of Rate Processes (McGraw-Hill, New York, 1941; Inostrannaya Literature, Moscow, 1948).

    Google Scholar 

  25. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Article  ADS  Google Scholar 

  26. V. N. Filipovich and A. M. Kalinina, in Vitreous State (Nauka, Leningrad, 1971), p. 28 [in Russian].

    Google Scholar 

  27. D. S. Sanditov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 2, 17 (1971).

  28. G. Meerlender, Rheol. Acta 6, 309 (1967).

    Google Scholar 

  29. E. Jenckel, Z. Phys. Chem., Abt. A 184, 309 (1939).

    Google Scholar 

  30. S. C. Waterton, J. Soc. Glass Technol. 16, 244 (1932).

    Google Scholar 

  31. H. Vogel, Z. Phys. 22, 645 (1921).

    Google Scholar 

  32. G. S. Fulcher, J. Am. Ceram. Soc. 8, 339 (1925).

    Article  Google Scholar 

  33. G. Tammann, Glaszustand (Leonard Voss, Leipzig, 1933; ONTI, Moscow, 1935) [in German and in Russian].

    Google Scholar 

  34. J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1961; Inostrannaya Literatura, Moscow, 1963).

    Google Scholar 

  35. D. Bredbury, M. Mark, and R. V. Kleinschmidt, Trans. ASME 73, 667 (1951).

    Google Scholar 

  36. N. I. Shishkin, Zh. Tekh. Fiz. 26, 1461 (1956).

    Google Scholar 

  37. B. A. Pospelov, Zh. Fiz. Khim. 29, 70 (1955).

    Google Scholar 

  38. A. S. Tverjanovich and E. B. Kasatkina, Fiz. Khim. Stekla 18(1), 86 (1992) [Sov. J. Glass Phys. Chem. 18 (1), 44 (1992)].

    Google Scholar 

  39. Ya. I. Frenkel, in Proceedings of the Workshop on the Viscosity of Liquids and Colloidal Solutions, Moscow, Soviet Union, 1944 (Academy of Sciences of the Soviet Union, Moscow, 1944), Vol. 2, p. 24 [in Russian].

    Google Scholar 

  40. P. B. Macedo and T. A. Litovitz, J. Chem. Phys. 42, 245 (1965).

    Article  ADS  Google Scholar 

  41. M. H. Cohen and D. Turnbull, J. Chem. Phys. 31, 1164 (1959).

    Article  ADS  Google Scholar 

  42. D. S. Sanditov, Fiz. Khim. Stekla 3, 580 (1977).

    Google Scholar 

  43. G. M. Bartenev and D. S. Sanditov, Relaxation Processes in Vitreous Systems (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  44. D. S. Sanditov, Vysokomol. Soedin., Ser. A 49(7), 1250 (2007) [Polym. Sci., Ser. A 49 (7), 837 (2007)].

    Google Scholar 

  45. J. D. Mackenzie, J. Am. Ceram. Soc. 46, 470 (1963).

    Article  Google Scholar 

  46. O. L. Anderson and H. E. Bommel, J. Am. Ceram. Soc. 38, 125 (1955).

    Article  Google Scholar 

  47. R. E. Strakna and H. T. Savage, J. Appl. Phys. 35, 1445 (1964).

    Article  ADS  Google Scholar 

  48. D. S. Sanditov, Dokl. Akad. Nauk 403, 498 (2005) [Dokl. Phys. Chem. 403, 146 (2005)].

    Google Scholar 

  49. A. I. Mel’ker and A. I. Mikhaĭlin, Fiz. Tverd. Tela (Leningrad) 23(6), 1746 (1981) [Sov. Phys. Solid State 23 (6), 1016 (1981)].

    Google Scholar 

  50. A. V. Lysenko, S. A. Lyakhov, V. A. Khonik, and M. Yu. Yazvitskiĭ, Fiz. Tverd. Tela (St. Petersburg) 51(2), 209 (2009) [Phys. Solid State 51 (2), 221 (2009)].

    Google Scholar 

  51. Yu. V. Agrafonov, D. S. Sanditov, and Sh. B. Tsydypov, Physics of Classical Disordered Systems (Buryat State University, Ulan-Ude, Russia, 2000) [in Russian].

    Google Scholar 

  52. A. A. Askadskiĭ and Yu. I. Matveev, Chemical Structure and Physical Properties of Polymers (Khimiya, Moscow, 1983) [in Russian].

    Google Scholar 

  53. V. I. Betekhtin, A. M. Glezer, A. G. Kadomtsev, and A. Yu. Kipyatkova, Fiz. Tverd. Tela (St. Petersburg) 40(1), 85 (1998) [Phys. Solid State 40 (1), 74 (1998)].

    Google Scholar 

  54. D. S. Sanditov, S. S. Badmaev, T. N. Mel’nichenko, and B. D. Sanditov, Fiz. Khim. Stekla 33(1), 56 (2007) [Glass Phys. Chem. 33 (1), 37 (2007)].

    Google Scholar 

  55. O. V. Mazurin, M. V. Strel’tsina, and T. N. Shvaĭko-Shvaĭkovskaya, Properties of Glasses and Glass-Forming Melts: A Reference Book (Nauka, Leningrad-St. Petersburg, 1973–1998), Vols. 1–6 [in Russian].

    Google Scholar 

  56. SciGlass (Version 6.6): Glass Property Information System (Institute of Theoretical Chemistry, Shrewsbury, MA, United States, 2006).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Sanditov.

Additional information

Original Russian Text © D.S. Sanditov, 2010, published in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 137, No. 4, pp. 767–782.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sanditov, D.S. Shear viscosity of glass-forming melts in the liquid-glass transition region. J. Exp. Theor. Phys. 110, 675–688 (2010). https://doi.org/10.1134/S106377611004014X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611004014X

Keywords

Navigation