Skip to main content
Log in

Frustrated exchange interactions formation at low temperatures and high hydrostatic pressures in La0.70Sr0.30MnO2.85

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The magnetic and thermal properties of the anion-deficient La0.70Sr0.30MnO2.85 manganite are investigated in wide temperature (4–350 K) range, including under hydrostatic pressure (0–1.1 GPa). Throughout the pressure range investigated, the sample is spin glass with diffused phase transition into paramagnetic state. It is established, that spin glass state is a consequence of exchange interaction frustration of the ferromagnetic clusters embeded into antiferromagnetic clusters. The magnetic moment freezing temperature T f of ferromagnetic clusters increases under pressure, freezing temperature dependence on pressure is characterized by derivative value ∼4.5 K/GPa, while the magnetic ordering T MO temperature dependence is characterized by derivative value ∼13 K/GPa. The volume fraction of sample having ferromagnetic state is V fer ∼ 13% and it increases under a pressure of 1.1 GPa by ΔV fer ≈ 6%. Intensification of ferromagnetic properties of the anion-deficient La0.70Sr0.30MnO2.85 manganite under hydrostatic pressure is a consequence of oxygen vacancies redistribution and unit cell parameters decrease. The most likely mechanism of frustrated exchange interactions formation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Trukhanov, I. O. Troyanchuk, M. Hervieu, H. Szymczak, and K. Bärner, Phys. Rev. B: Condens. Matter 66, 184 424 (2002).

    Google Scholar 

  2. S. M. Dunaevskiĭ, Fiz. Tverd. Tela (St. Petersburg) 46(2), 193 (2004) [Phys. Solid State 46 (2), 193 (2004)].

    Google Scholar 

  3. J. B. Goodenough, Rep. Prog. Phys. 67, 1915 (2004).

    Article  ADS  Google Scholar 

  4. E. Dagotto, New J. Phys. 7, 67 (2005).

    Article  ADS  Google Scholar 

  5. K. Dörr, J. Phys. D: Appl. Phys. 39, R125 (2006).

    Article  Google Scholar 

  6. S. V. Trukhanov, L. S. Lobanovski, A. V. Trukhanov, S. G. Zemskova, and A. I. Beskrovniy, Phys. Status Solidi C 6, 1001 (2009).

    Article  ADS  Google Scholar 

  7. J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).

    Article  ADS  Google Scholar 

  8. E. L. Nagaev, Phys. Rep. 346, 387 (2001).

    Article  ADS  Google Scholar 

  9. S. V. Trukhanov, Zh. Éksp. Teor. Fiz. 128(3), 597 (2005) [JETP 101 (3), 513 (2005)].

    Google Scholar 

  10. S. V. Trukhanov, D. P. Kozlenko, and A. V. Trukhanov, J. Magn. Magn. Mater. 320, e88 (2008).

    Article  ADS  Google Scholar 

  11. M. Medarde, J. Mesot, P. Lacorre, S. Rosenkranz, P. Fischer, and K. Gobrecht, Phys. Rev. B: Condens. Matter 52, 9248 (1995).

    ADS  Google Scholar 

  12. Y. Moritomo, A. Asamitsu, and Y. Tokura, Phys. Rev. B: Condens. Matter 51, 16 491 (1995).

    Google Scholar 

  13. Y. Moritomo, A. Asamitsu, and Y. Tokura, Phys. Rev. B: Condens. Matter 56, 12 190 (1997).

    Google Scholar 

  14. H. Y. Hwang, T. T. M. Palstra, S.-W. Cheong, and B. Batlogg, Phys. Rev. B: Condens. Matter 52, 15046 (1995).

    ADS  Google Scholar 

  15. D. P. Kozlenko, I. N. Goncharenko, B. N. Savenko, and V. I. Voronin, J. Phys.: Condens. Matter 16, 6755 (2004).

    Article  ADS  Google Scholar 

  16. P. G. Radaelli, G. Iannone, M. Marezio, H. Y. Hwang, S.-W. Cheong, J. D. Jorgensen, and D. N. Argyriou, Phys. Rev. B: Condens. Matter 56, 8265 (1997).

    ADS  Google Scholar 

  17. I. M. Fita, R. Szymczak, M. Baran, V. Markovich, R. Puzniak, A. Wisniewski, S. V. Shiryaev, V. N. Varyukhin, and H. Szymczak, Phys. Rev. B: Condens. Matter 68, 014 436 (2003).

    Google Scholar 

  18. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).

    Article  ADS  Google Scholar 

  19. S. V. Trukhanov, J. Mater. Chem. 13, 347 (2003).

    Article  Google Scholar 

  20. N. Takeshita, C. Terakura, D. Akahoshi, Y. Tokura, and H. Takagi, Phys. Rev. B: Condens. Matter 69, 180405(R) (2004).

    ADS  Google Scholar 

  21. S. V. Trukhanov, I. O. Troyanchuk, I. M. Fita, H. Szymczak, and K. Bärner, J. Magn. Magn. Mater. 237, 276 (2001).

    Article  ADS  Google Scholar 

  22. S. V. Trukhanov, A. V. Trukhanov, H. Szymczak, R. Szymczak, and M. Baran, J. Phys. Chem. Solids 67, 675 (2006).

    Article  ADS  Google Scholar 

  23. S. V. Trukhanov, Zh. Éksp. Teor. Fiz. 127(1), 107 (2005) [JETP 100 (1), 95 (2005)].

    MathSciNet  Google Scholar 

  24. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, and Y. Tokura, Phys. Rev. B: Condens. Matter 51, 14 103 (1995).

    Google Scholar 

  25. S. V. Trukhanov, M. V. Bushinskiĭ, I. O. Troyanchuk, and H. Szymczak, Zh. Éksp. Teor. Fiz. 126(4), 874 (2004) [JETP 99 (4), 756 (2004)].

    Google Scholar 

  26. S. V. Trukhanov, I. O. Troyanchuk, A. V. Trukhanov, I. M. Fita, A. N. Vasil’ev, A. Maignan, and H. Szymczak, Pis’ma Zh. Éksp. Teor. Fiz. 83(1), 36 (2006) [JETP Lett. 83 (1), (2006)].

    Google Scholar 

  27. D. P. Kozlenko, S. V. Trukhanov, E. V. Lukin, I. O. Troyanchuk, and B. N. Savenko, Eur. Phys. J. B 58, 361 (2007).

    Article  ADS  Google Scholar 

  28. S. V. Trukhanov, I. O. Troyanchuk, I. A. Bobrikov, V. G. Simkin, and A. M. Balagurov, Kristallografiya 52(5), 834 (2007) [Crystallogr. Rep. 52 (5), 805 (2007)].

    Google Scholar 

  29. S. Nafis, J. A. Woollam, Z. S. Shan, and D. J. Sellmyer, J. Appl. Phys. 70, 6050 (1991).

    Article  ADS  Google Scholar 

  30. F. Conde, C. Gomez-Polo, and A. Hernando, J. Magn. Magn. Mater. 138, 123 (1994).

    Article  ADS  Google Scholar 

  31. D. P. Kozlenko, S. V. Trukhanov, E. V. Lukin, I. O. Troyanchuk, B. N. Savenko, and V. P. Glazkov, Pis’ma Zh. Éksp. Teor. Fiz. 85(2), 123 (2007) [JETP Lett. 85 (2), 113 (2007)].

    Google Scholar 

  32. S. V. Trukhanov, L. S. Lobanovski, M. V. Bushinsky, V. A. Khomchenko, N. V. Pushkarev, I. O. Troyanchuk, A. Maignan, D. Flahaut, H. Szymczak, and R. Szymczak, Eur. Phys. J. B 42, 51 (2004).

    Article  ADS  Google Scholar 

  33. S. V. Trukhanov, N. V. Kasper, I. O. Troyanchuk, M. Tovar, H. Szymczak, and K. Bärner, J. Solid State Chem. 169, 85 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Trukhanov.

Additional information

Original Russian Text © S.V. Trukhanov, A.V. Trukhanov, A.N. Vasiliev, H. Szymczak, 2010, published in Russian in Zhurnal Éksperimental’noĭ i Teoreticheskoĭ Fiziki, 2010, Vol. 138, No. 2, pp. 236–242.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trukhanov, S.V., Trukhanov, A.V., Vasiliev, A.N. et al. Frustrated exchange interactions formation at low temperatures and high hydrostatic pressures in La0.70Sr0.30MnO2.85 . J. Exp. Theor. Phys. 111, 209–214 (2010). https://doi.org/10.1134/S106377611008008X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611008008X

Keywords

Navigation