Skip to main content
Log in

Thermophysical properties of the polymorphic modifications of lithium hydride in the megabar shock pressure range

  • Solids and Liquids
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The region of a high electrical conductivity of lithium hydride is experimentally determined in the pressure range 100–150 GPa and the temperature range 2000–3000 K of multiple shock compression. This result is used to construct thermodynamic potentials for the two polymorphic modifications of lithium hydride (B1, B2), and these potentials make it possible to calculate its thermophysical properties in the shock pressure range 80–1200 GPa. The calculated and experimental results are analyzed to determine the B1 ↔ B2 equilibrium line for the polymorphic modifications of lithium hydride at pressures up to 300 GPa and temperatures up to 2000 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Zurek, R. Hoffmann, N. W. Ashcroft, A. R. Oganov, and A. O. Lyakhov, Proc. Natl. Acad. Sci. USA 106, 17640 (2009).

    Article  ADS  Google Scholar 

  2. Q. Gou, X. Wang, and J. Meng, High Press. Res. 6, 141 (1991).

    Article  ADS  Google Scholar 

  3. Y. Wang, R. Ahuja, and B. Johansson, Phys. Status Solidi B 235, 470 (2003).

    Article  ADS  Google Scholar 

  4. S. Leb’egue, M. Alouani, B. Arnaud, and P. E. Blöchl, Europhys. Lett. 63, 562 (2003).

    Article  ADS  Google Scholar 

  5. J. L. Martins, Phys. Rev. B: Condens. Matter 41, 7883 (1990).

    Article  ADS  Google Scholar 

  6. R. T. Howie, O. Narygina, C. L. Guillaume, S. Evans, and E. Gregoryanz, Phys. Rev. B: Condens. Matter 86, 064108 (2012).

    Article  ADS  Google Scholar 

  7. A. Lazicki, P. Loubeyre, F. Occelli, R. J. Hemley, and M. Mezouar, Phys. Rev. B: Condens. Matter 85, 054103 (2012).

    Article  ADS  Google Scholar 

  8. J. Hama, K. Suito, and N. Kawakami, Phys. Rev. B: Condens. Matter 39, 669 (1989).

    Article  Google Scholar 

  9. S. S. Nabatov, A. N. Dremin, V. I. Postnov, and V. V. Yakushev, JETP Lett. 29(7), 369 (1978).

    ADS  Google Scholar 

  10. A. A. Golyshev and A. M. Molodets, Combust., Explos., Shock Waves 49(2), 219 (2013).

    Article  Google Scholar 

  11. Yu. V. Ivanov, V. B. Mintsev, V. E. Fortov, and A. N. Dremin, Sov. Phys. JETP 44(1), 112 (1976).

    ADS  Google Scholar 

  12. J. M. Ziman, Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems (Cambridge University Press, Cambridge, 1979; Mir, Moscow, 1982).

    Google Scholar 

  13. LASL Shock Hugoniot Data, Ed. by S. P. Marsh (University of California Press, Berkeley, United States, 1980).

    Google Scholar 

  14. V. K. Gryaznov, M. V. Zhernokletov, V. N. Zubarev, I. L. Iosilevskii, and V. E. Tortov, Sov. Phys. JETP 51(2), 288 (1980).

    ADS  Google Scholar 

  15. A. M. Molodets, High Pressure Res. 30, 325 (2010).

    Article  ADS  Google Scholar 

  16. L. V. Al’tshuler, S. B. Kormer, A. A. Bakanova, and R. F. Trunin, Sov. Phys. JETP 11, 573 (1960).

    Google Scholar 

  17. T. Ogitsu, E. Schwegler, F. Gygi, and G. Galli, Phys. Rev. Lett. 91, 175502 (2003).

    Article  ADS  Google Scholar 

  18. J. Zhang, Y. Zhao, Y. Wang, and L. Daemen, J. Appl. Phys. 103, 093513 (2008).

    Article  ADS  Google Scholar 

  19. W. J. Nellis, S. T. Weir, and A. C. Mitchel, Phys. Rev. B: Condens. Matter 59, 3434 (1999).

    Article  ADS  Google Scholar 

  20. V. E. Fortov, V. V. Yakushev, K. L. Kagan, I. V. Lomonosov, V. I. Postnov, T. I. Yakusheva, and A. N. Kuryanchik, JETP Lett. 74(8), 418 (2001).

    Article  ADS  Google Scholar 

  21. E. E. Shpil’rain and K. A. Yakimovich, Lithium Hydride: Physico-Chemical and Thermophysical Properties (Izd. Standartov, Moscow, 1972) [in Russian].

    Google Scholar 

  22. C. Guillaume, E. Gregoryanz, O. Degtyareva, M. I. McMahon, M. Hanfland, S. Evans, M. Guthrie, S. V. Sinogeikin, and H.-K. Mao, Nat. Phys. 7, 211 (2011).

    Article  Google Scholar 

  23. P. Loubeyre, R. LeToullec, D. Hausermann, M. Hanfland, R. J. Hemley, H. K. Mao, and L. W. Finger, Nature (London) 383, 702 (1996).

    Article  ADS  Google Scholar 

  24. Ch. E. Ragan III, Phys. Rev. A: At., Mol., Opt. Phys. 29, 1391 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Molodets.

Additional information

Original Russian Text © A.M. Molodets, D.V. Shakhrai, V.E. Fortov, 2014, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2014, Vol. 145, No. 6, pp. 1015–1024.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molodets, A.M., Shakhrai, D.V. & Fortov, V.E. Thermophysical properties of the polymorphic modifications of lithium hydride in the megabar shock pressure range. J. Exp. Theor. Phys. 118, 896–903 (2014). https://doi.org/10.1134/S1063776114050136

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776114050136

Keywords

Navigation