Skip to main content
Log in

DMFT+Σ approach to disordered hubbard model

  • Special issue in honor of L.V. Keldysh’s 85th birthday Issue Editor: S. Tikhodeev
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We briefly review the generalized dynamic mean-field theory DMFT+Σ applied to both repulsive and attractive disordered Hubbard models. We examine the general problem of metal–insulator transition and the phase diagram in the repulsive case, as well as the BCS–BEC crossover region of the attractive model, demonstrating a certain universality of single-electron properties under disordering in both models. We also discuss and compare the results for the density of states and dynamic conductivity in the repulsive and attractive cases and the generalized Anderson theorem behavior of the superconducting critical temperature in the disordered attractive case. A brief discussion of the behavior of Ginzburg–Landau coefficients under disordering in the BCS–BEC crossover region is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. F. Mott, Metal–Insulator Transitions, 2nd ed. (Taylor and Francis, London, 1990).

    Google Scholar 

  2. J. Hubbard, Proc. R. Soc. London, Ser. A 276, 238 (1963); Proc. R. Soc. London, Ser. A 277, 237 (1964); Proc. R. Soc. London, Ser. A 281, 401 (1964); Proc. R. Soc. London, Ser. A 285, 542 (1965); Proc. R. Soc. London, Ser. A 296, 829 (1967); Proc. R. Soc. London, Ser. A 296, 100 (1967).

    Article  ADS  Google Scholar 

  3. W. Metzner and D. Vollhardt, Phys. Rev. Lett. 62, 324 (1989).

    Article  ADS  Google Scholar 

  4. D. Vollhardt, in Correlated Electron Systems, Ed. by V. J. Emery (World Scientific, Singapore, 1993), p. 57.

  5. Th. Pruschke, M. Jarrell, and J. K. Freericks, Adv. Phys. 44, 210 (1995).

    Article  Google Scholar 

  6. A. Georges, G. Kotliar, W. Krauth, and M. J. Rozenberg, Rev. Mod. Phys. 68, 13 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  7. D. Vollhardt, AIP Conf. Proc. 1297, 339 (2010), arXiv:1004.5069.

    Article  ADS  Google Scholar 

  8. G. Kotliar and D. Vollhardt, Phys. Today 57, 53 (2004).

    Article  Google Scholar 

  9. D. M. Eagles, Phys. Rev. 186, 456 (1969).

    Article  ADS  Google Scholar 

  10. A. J. Leggett, in Modern Trends in the Theory of Condensed Matter, Ed. by A. Pekalski and J. Przystawa (Springer, Berlin, 1980).

  11. P. Nozieres and S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985).

    Article  ADS  Google Scholar 

  12. I. Bloch, J. Dalibard, and W. Zwerger, Rev. Mod. Phys. 80, 885 (2008).

    Article  ADS  Google Scholar 

  13. L. P. Pitaevskii, Phys. Usp. 44, 333 (2006).

    Article  ADS  Google Scholar 

  14. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, JETP Lett. 82, 198 (2005).

    Article  ADS  Google Scholar 

  15. M. V. Sadovskii, I. A. Nekrasov, E. Z. Kuchinskii, Th. Prushke, and V. I. Anisimov, Phys. Rev. B 72, 155105 (2005).

    Article  ADS  Google Scholar 

  16. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Low Temp. Phys. 32, 398 (2006).

    Article  ADS  Google Scholar 

  17. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Usp. 55, 325 (2012).

    Article  ADS  Google Scholar 

  18. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, J. Exp. Theor. Phys. 106, 581 (2008).

    Article  ADS  Google Scholar 

  19. E. Z. Kuchinskii, N. A. Kuleeva, I. A. Nekrasov, and M. V. Sadovskii, J. Exp. Theor. Phys. 110, 325 (2010).

    Article  ADS  Google Scholar 

  20. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Rev. B 80, 115124 (2009).

    Article  ADS  Google Scholar 

  21. E. Z. Kuchinskii, I. A. Nekrasov, and M. V. Sadovskii, Phys. Rev. B 75, 115102 (2007).

    Article  ADS  Google Scholar 

  22. N. A. Kuleeva, E. Z. Kuchinskii, and M. V. Sadovskii, J. Exp. Theor. Phys. 119, 264 (2014).

    Article  Google Scholar 

  23. E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii, JETP Lett. 100, 192 (2014).

    Article  Google Scholar 

  24. E. Z. Kuchinskii, N. A. Kuleeva, and M. V. Sadovskii, J. Exp. Theor. Phys. 120, 1055 (2015); arXiv:1411.1547.

    Article  ADS  Google Scholar 

  25. P. W. Anderson, Phys. Rev. 109, 1492 (1958).

    Article  ADS  Google Scholar 

  26. M. V. Sadovskii, Diagrammatics (World Scientific, Singapore, 2006).

    Book  MATH  Google Scholar 

  27. R. Bulla, T. A. Costi, and T. Pruschke, Rev. Mod. Phys. 60, 395 (2008).

    Article  ADS  Google Scholar 

  28. D. Vollhardt and P. Wölfle, Phys. Rev. B 22, 4666 (1980); Phys. Rev. Lett. 48, 699 (1982); Springer Ser. Solid State Sci. 39, 26 (1982).

    Article  ADS  Google Scholar 

  29. M. V. Sadovskii, The Theory of Electron Localizationin Disordered Systems, Soviet Scientific Reviews–Physics Reviews, Vol. 7, Ed. by I. M. Khalatnikov (Harwood Academic, New York, 1986), p. 1

  30. A. V. Myasnikov and M. V. Sadovskii, Sov. Phys. Solid State 24, 2033 (1982)

    Google Scholar 

  31. E. A. Kotov and M. V. Sadovskii, Zs. Phys. B 51, 17 (1983).

    Article  ADS  Google Scholar 

  32. P. Wölfle and D. Vollhardt, in Electronic Phase Transitions, Ed. by W. Hanke and Yu. V. Kopaev (North–Holland, Amsterdam, 1992), p. 1.

  33. K. Byczuk, W. Hofstetter, and D. Vollhardt, Phys. Rev. Lett. 94, 056404 (2005).

    Article  ADS  Google Scholar 

  34. R. Bulla, Phys. Rev. Lett. 83, 136 (1999)

    Article  ADS  Google Scholar 

  35. R. Bulla, T. A. Costi, and D. Vollhardt, Phys. Rev. B 64, 045103 (2001).

    Article  ADS  Google Scholar 

  36. N. Blümer, PhD Thesis (München, 2002).

    Google Scholar 

  37. P. A. Lee and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    Article  ADS  Google Scholar 

  38. D. Belitz and T. R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994).

    Article  ADS  Google Scholar 

  39. A. M. Finkelshtein, Sov. Phys. JETP 57, 97 (1983)

    Google Scholar 

  40. C. Castellani et al., Phys. Rev. B 30, 527 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  41. M. A. Erkabaev and M. V. Sadovskii, J. Moscow Phys. Soc. 2, 233 (1992).

    Google Scholar 

  42. M. Keller, W. Metzner, and U. Schollwock, Phys. Rev. Lett. 86, 4612 (2001).

    Article  ADS  Google Scholar 

  43. A. Toschi, P. Barone, M. Capone, and C. Castellani, New J. Phys. 7, 7 (2005).

    Article  ADS  Google Scholar 

  44. J. Bauer, A. C. Hewson, and N. Dupis, Phys. Rev. B 79, 214518 (2009).

    Article  ADS  Google Scholar 

  45. A. Koga and P. Werner, Phys. Rev. A 84, 023638 (2011).

    Article  ADS  Google Scholar 

  46. M. V. Sadovskii, Superconductivity and Localization (World Scientific, Singapore, 2000).

    Book  MATH  Google Scholar 

  47. P. G. de Gennes, Superconductivity of Metals and Alloys (W. A. Benjamin, New York, 1966).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Z. Kuchinskii.

Additional information

Contribution for the JETP special issue in honor of L.V. Keldysh’s 85th birthday

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuchinskii, E.Z., Sadovskii, M.V. DMFT+Σ approach to disordered hubbard model. J. Exp. Theor. Phys. 122, 509–524 (2016). https://doi.org/10.1134/S106377611603016X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611603016X

Keywords

Navigation