Skip to main content
Log in

Formation of correlated states and tunneling for a low energy and controlled pulsed action on particles

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider a method for optimizing the tunnel effect for low-energy particles by using coherent correlated states formed under controllable pulsed action on these particles. Typical examples of such actions are the effect of a pulsed magnetic field on charged particles in a gas or plasma. Coherent correlated states are characterized most comprehensively by the correlation coefficient r(t); an increase of this factor elevates the probability of particle tunneling through a high potential barrier by several orders of magnitude without an appreciable increase in their energy. It is shown for the first time that the formation of coherent correlated states, as well as maximal |r(t)|max and time-averaged 〈|r(t)|〉 amplitudes of the correlation coefficient and the corresponding tunneling probability are characterized by a nonmonotonic (oscillating) dependence on the forming pulse duration and amplitude. This result makes it possible to optimize experiments on the realization of low-energy nuclear fusion and demonstrates the incorrectness of the intuitive idea that the tunneling probability always increases with the amplitude of an external action on a particle. Our conclusions can be used, in particular, for explaining random (unpredictable and low-repeatability) experimental results on optimization of energy release from nuclear reactions occurring under a pulsed action with fluctuations of the amplitude and duration. We also consider physical premises for the observed dependences and obtain optimal relations between the aforementioned parameters, which ensure the formation of an optimal coherent correlated state and optimal low-energy tunneling in various physical systems with allowance for the dephasing action of a random force. The results of theoretical analysis are compared with the data of successful experiments on the generation of neutrons and alpha particles in an electric discharge in air and gaseous deuterium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Dodonov, E. V. Kurmishev, and V. I. Manko, Phys Lett. A 79, 150 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  2. V. V. Dodonov and V. I. Man’ko, Transactions of FIAN (Russia) 183, 71 (1987).

    Google Scholar 

  3. V. V. Dodonov, A. B. Klimov, and V. I. Man’ko, Transactions of FIAN (Russia) 200, 56 (1991).

    Google Scholar 

  4. V. V. Dodonov, A. B. Klimov, and V. I. Man’ko, Phys Lett. A 220, 41 (1996).

    Article  ADS  Google Scholar 

  5. V. I. Vysotskii and S. V. Adamenko, Tech Phys. 55, 613 (2010).

    Article  Google Scholar 

  6. V. I. Vysotskii, M. V. Vysotskyy, and S. V. Adamenko, J. Exp. Theor. Phys. 114, 243 (2012).

    Article  ADS  Google Scholar 

  7. V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskyy, J. Exp. Theor. Phys. 115, 551 (2012).

    Article  ADS  Google Scholar 

  8. V. I. Vysotskii and M. V. Vysotskyy, Eur Phys. J. A 49, 99 (2013). doi 10.1140/epja/i2013-13099-2

    Article  ADS  Google Scholar 

  9. V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskyy, Ann Nucl. Energy 62, 618 (2013).

    Article  Google Scholar 

  10. V. I. Vysotskii and M. V. Vysotskyy, J. Exp. Theor. Phys. 118, 534 (2014).

    Article  ADS  Google Scholar 

  11. V. V. Dodonov and A. V. Dodonov, J. Russ. Laser Res. 35, 39 (2014).

    Article  Google Scholar 

  12. A. V. Dodonov and V. V. Dodonov, Phys Lett. A 35, 1071 (2014).

    Article  ADS  Google Scholar 

  13. V. I. Vysotskii and M. V. Vysotskyy, J. Exp. Theor. Phys. 121, 559 (2015).

    Article  ADS  Google Scholar 

  14. V. I. Vysotskii and M. V. Vysotskyy, Curr Sci. 108, 524 (2015).

    Google Scholar 

  15. E. Schrödinger, Ber. Kgl. Akad. Wiss., Berlin S24, 296 (1930).

    Google Scholar 

  16. H. P. Robertson, Phys Rev. A 35, 667 (1930).

    Google Scholar 

  17. V. V. Dodonov and A. V. Dodonov, Phys Scripta 90, 074049 (2015).

    Article  ADS  Google Scholar 

  18. V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskii, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 369 (2012).

    Article  Google Scholar 

  19. V. I. Vysotskii, M. V. Vysotskyy, and S. Bartalucci, Ann Nucl. Energy 62, 613 (2013).

    Article  Google Scholar 

  20. V. I. Vysotskii and A. A. Kornilova, Ann Nucl. Energy 62, 626 (2013).

    Article  Google Scholar 

  21. V. I. Vysotskii and A. A. Kornilova, Curr Sci. 108, 636 (2015).

    Google Scholar 

  22. V. N. Chernega, J. Russ. Laser Res. 34, 168 (2013).

    Article  Google Scholar 

  23. D. Letts, D. Cravens, and P. I. Hagelstein, Low-Energy Nuclear Reactions Sourcebook (Am. Chem. Soc., Washington, DC, 2009), Vol. 2, p. 81.

    Google Scholar 

  24. V. I. Vysotskii and M. V. Vysotskyy, J. Exp. Theor. Phys. 120, 246 (2015).

    Article  ADS  Google Scholar 

  25. V. I. Dubinko, Lett Mater. 5, 87 (2015).

    Google Scholar 

  26. S. Adamenko, and F. Selleri, and A. van der Merwe, Fundam. Theor. Phys. 156 (2007).

    Google Scholar 

  27. S. V. Adamenko and V. I. Vysotskii, Found Phys. 34, 1801 (2004).

    Article  ADS  Google Scholar 

  28. S. V. Adamenko and V. I. Vysotskii, Found Phys. Lett. 17, 203 (2004).

    Article  Google Scholar 

  29. S. V. Adamenko and V. I. Vysotskii, Found Phys. Lett. 19, 21 (2006).

    Article  Google Scholar 

  30. L. I. Urutskoev, V. I. Liksonov, and V. G. Tsinoev, Ann Found. Louis de Broglie 27, 701 (2002).

    Google Scholar 

  31. M. I. Lomaev and B. A. Nechaev, V. N. Padalko, S. I. Kuznetsov, D. A. Sorokin, V. F. Tarasenko, and A. P. Yalovets, Tech Phys. 57, 124 (2012).

    Article  Google Scholar 

  32. A. V. Agafonov, A. V. Bagulya, O. D. Dalkarov, et al., Phys Rev. Lett. 111, 115003 (2013).

    Article  ADS  Google Scholar 

  33. R. Mills, http://brilliantlightpower.com.

  34. P. Caldirola, Nuovo Cim. 18, 393 (1941).

    Article  ADS  Google Scholar 

  35. E. Kanai, Progr Theor. Phys. 3, 440 (1948).

    Article  ADS  Google Scholar 

  36. E. M. Bazylyan and Yu. P. Raizer, Lightning Physics and Lightning Protection (Fizmatlit, Moscow, 2001; CRC, Boca Raton, FL, 2000).

    Book  Google Scholar 

  37. A. V. Gurevich, V. P. Antonova, A. P. Chubenko, et al., Phys Rev. Lett. 108, 125001 (2012).

    Article  ADS  Google Scholar 

  38. B. Zh. Zalikhanov, Phys Part. Nucl. 47, 108 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vysotskii.

Additional information

Original Russian Text © V.I. Vysotskii, M.V. Vysotskyy, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 2, pp. 234–251.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysotskii, V.I., Vysotskyy, M.V. Formation of correlated states and tunneling for a low energy and controlled pulsed action on particles. J. Exp. Theor. Phys. 125, 195–209 (2017). https://doi.org/10.1134/S106377611707024X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106377611707024X

Navigation