Skip to main content
Log in

Models for the dynamics of dust-like matter in the self-gravity field: The method of hydrodynamic substitutions

  • Nuclei, Particles, Fields, Gravitation, and Astrophysics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Models for the dynamics of a dust-like medium in the self-gravity field are investigated. Solutions of the corresponding problems are constructed by the method of hydrodynamic substitutions generalizing the Cole–Hopf substitutions. The method is extended to multidimensional ideal and viscous fluid flows with cylindrical and spherical symmetries for which exact solutions are constructed. Solutions for the dynamics of self-gravitating dust with arbitrary initial distributions of both fluid density and velocity are constructed using special coordinate transformations. In particular, the problem of cosmological expansion is considered in terms of Newton’s gravity theory. Models of a one-dimensional viscous dust fluid flow and some problems of gas hydrodynamics are considered. Examples of exact solutions and their brief analysis are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Jeans, Phil. Trans. R. Soc. London, Ser. A 199, 1 (1902).

    Article  ADS  Google Scholar 

  2. K. A. Postnov and A. V. Zasov, Course of General Astrophysics (Mosk. Gos. Univ., Moscow, 2005) [in Russian].

    Google Scholar 

  3. A. V. Gurevich, K. P. Zybin, and Yu. V. Medvedev, J. Exp. Theor. Phys. 77, 593 (1993).

    ADS  Google Scholar 

  4. A. V. Gurevich and K. P. Zybin, Phys. Usp. 38, 687 (1995).

    Article  ADS  Google Scholar 

  5. S. N. Gurbatov, O. V. Rudenko, and A. I. Saichev, Waves and Structures in Nonlinear Media without Dispersion. Applications to Nonlinear Acoustics (Fizmatlit, Moscow, 2006) [in Russian].

    MATH  Google Scholar 

  6. A. D. Polyanin, V. F. Zaitsev, and A. I. Zhurov, Solution Methods for Nonlinear Equations of Mathematical Physics and Mechanics (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  7. V. M. Zhuravlev and A. V. Nikitin, Nelinein. Mir 5 (9), 603 (2007).

    Google Scholar 

  8. V. M. Zhuravlev and D. A. Zinov’ev, JETP Lett. 87, 266 (2008).

    Article  ADS  Google Scholar 

  9. V. M. Zhuravlev and D. A. Zinov’ev, JETP Lett. 88, 164 (2008).

    Article  ADS  Google Scholar 

  10. V. M. Zhuravlev, Theor. Math. Phys. 158, 61 (2009).

    Article  Google Scholar 

  11. V. M. Zhuravlev, Prostranstvo, Vremya Fundam. Vzaimod., No. 1, 5 (2017).

    Google Scholar 

  12. Innovative Technologies, Ed. by S. V. Bulyarskii (Ulyanov. Gos. Univ., Ul’yanovsk, 2010), p. 77 [in Russian].

  13. V. M. Zhuravlev and D. A. Zinov’ev, Phys. Wave Phenom. 19, 313 (2011).

    Article  ADS  Google Scholar 

  14. V. M. Zhuravlev, D. A. Zinov’ev, Izv. Vyssh. Uchebn. Zaved., Povolzh. Reg., Fiz.-Mat. Nauki, No. 4, 174 (2012).

    Google Scholar 

  15. E. Hopf, Comm. Pure Appl. Math. 3, 201230 (1950).

    Article  Google Scholar 

  16. J. D. Cole, Quart. Appl. Math. 9, 225236 (1951).

    Article  Google Scholar 

  17. J. M. Burgers, The Nonlinear Diffusion Equation (D. Reidel, Dordrecht, Holland, 1974).

    Book  MATH  Google Scholar 

  18. G. B. Whitham, Linear and Nonlinear Waves (Wiley Intersci., New York, 1974).

    MATH  Google Scholar 

  19. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987).

    Google Scholar 

  20. I. D. Novikov, Evolution of the Universe (Nauka, Moscow, 1983; Cambridge Univ. Press, Cambridge, 1983).

    Google Scholar 

  21. W. McCrea and E. Milne, Quart. J. Math., No. 5, 73 (1934).

    Article  ADS  Google Scholar 

  22. L. M. Ozernoi, O. F. Prilutskii, and I. L. Rozental’, High Energy Astrophysics (Atomizdat, Moscow, 1973; Pergamon, Oxford, 1978).

    Google Scholar 

  23. K. A. Bronnikov and S. G. Rubin, Lectures on Gravity and Cosmology (Mosk. Inzh. Fiz. Inst., Moscow, 2008) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Zhuravlev.

Additional information

Original Russian Text © V.M. Zhuravlev, 2017, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2017, Vol. 152, No. 3, pp. 495–510.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, V.M. Models for the dynamics of dust-like matter in the self-gravity field: The method of hydrodynamic substitutions. J. Exp. Theor. Phys. 125, 420–433 (2017). https://doi.org/10.1134/S1063776117090102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776117090102

Navigation