Skip to main content
Log in

Features of Correlated States and a Mechanism of Self-Similar Selection of Nuclear Reaction Channels Involving Low-Energy Charged Particles

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Features of the Robertson–Schrödinger coordinate–momentum and energy–time uncertainty relations and connection between them have been considered. A method has been proposed to determine the duration of giant energy fluctuations of particles in a correlated coherent state. This method makes it possible to justify both a huge (many orders of magnitude) increase in the probability of the tunnel effect with the subsequent low-energy nuclear reaction and the automatic selection of low-energy reaction channels involving charged particles and the exclusion of the production of radioactive daughter isotopes. It has been shown that the same mechanism of formation of correlated coherent states explains a very significant suppression of gamma radiation observed in such reactions stimulated by the virtual energy as compared to similar reactions proceeding at a high “real” energy of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. S. Lipinski and H. Lipinski, WO Int. Patent No. 2014/189799 A9 (2013).

    Google Scholar 

  2. G. Levi, E. Foschi, B. Höistad, R. Pettersson, L. Tegnér, and H. Essén, Observation of Abundant Heat Production from a Reactor Device and of Isotopic Changes in the Fuel, Official Expertise in Lugano, 2014. http://www.sifferkoll.se/sifferkoll/wp-content/uploads/2014/10/LuganoReportSubmit.pdf.

  3. R. Mills, Brilliant Light Power, Inc. (BLP). http://brilliantlightpower.com.

  4. V. I. Vysotskii and S. V. Adamenko, Tech. Phys. 55, 613 (2010).

    Article  Google Scholar 

  5. V. I. Vysotskii, M. V. Vysotskyy, and S. V. Adamenko, J. Exp. Theor. Phys. 114, 243 (2012).

    Article  ADS  Google Scholar 

  6. V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskyy, J. Exp. Theor. Phys. 115, 551 (2012).

    Article  ADS  Google Scholar 

  7. V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskyy, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 369 (2012).

    Article  Google Scholar 

  8. V. I. Vysotskii and M. V. Vysotskyy, Eur. Phys. J. A 49, 99 (2013).

    Article  ADS  Google Scholar 

  9. V. I. Vysotskii, S. V. Adamenko, and M. V. Vysotskyy, Ann. Nucl. Energy 62, 618 (2013).

    Article  Google Scholar 

  10. V. I. Vysotskii and M. V. Vysotskyy, J. Exp. Theor. Phys. 118, 534 (2014).

    Article  ADS  Google Scholar 

  11. V. I. Vysotskii and M. V. Vysotskyy, J. Exp. Theor. Phys. 121, 559 (2015).

    Article  ADS  Google Scholar 

  12. V. I. Vysotskii and M. V. Vysotskyy, Curr. Sci. 108, 524 (2015).

    Google Scholar 

  13. V. I. Vysotskii and M. V. Vysotskyy, J. Exp. Theor. Phys. 120, 246 (2015).

    Article  ADS  Google Scholar 

  14. V. I. Vysotskii and M. V. Vysotskyy, J. Exp. Theor. Phys. 125, 195 (2017).

    Article  ADS  Google Scholar 

  15. V. I. Vysotskii, M. V. Vysotskyy, and S. Bartalucci, J. Exp. Theor. Phys. 127, 479 (2018).

    Article  ADS  Google Scholar 

  16. E. Schrödinger, Ber. Kgl. Akad. Wiss. Berlin S24, 296 (1930).

    Google Scholar 

  17. H. P. Robertson, Phys. Rev. A 35, 667 (1930).

    Google Scholar 

  18. V. V. Dodonov and A. V. Dodonov, Phys. Scr. 90, 074049 (2015).

    Article  ADS  Google Scholar 

  19. V. V. Dodonov, E. V. Kurmyshev, and V. I. Manko, Phys. Lett. A 79, 150 (1980).

    Article  ADS  MathSciNet  Google Scholar 

  20. V. V. Dodonov and V. I. Man’ko, Tr. FIAN 183, 71 (1987).

    Google Scholar 

  21. V. V. Dodonov, A. B. Klimov, and V. I. Man’ko, Tr. FIAN 200, 56 (1991).

    Google Scholar 

  22. V. V. Dodonov, A. B. Klimov, and V. I. Man’ko, Phys. Lett. A 220, 41 (1996).

    Article  ADS  Google Scholar 

  23. V. V. Dodonov and A. V. Dodonov, J. Russ. Laser Res. 35, 39 (2014).

    Article  Google Scholar 

  24. A. V. Dodonov and V. V. Dodonov, Phys. Lett. A 378, 1071 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  25. W. Pauli, in Handbuch der Physik, Ed. by S. Flügge (Springer, Berlin, 1926), Vol. 5/1, p. 60.

  26. Y. Aharonov and D. Bohm, Phys. Rev. 122, 1649 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Razavy, Am. J. Phys. 35, 955 (1967).

    Article  ADS  Google Scholar 

  28. R. Arshansky and L. P. Horwitz, Found. Phys. 15, 701 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  29. S. Rolfs and R. W. Kavanagh, Nucl. Phys. A 455, 179 (1986).

    Article  ADS  Google Scholar 

  30. G. Calvi, S. Cherubini, M. Lattuade, et al., Nucl. Phys. A 621, 139 (1997).

    Article  ADS  Google Scholar 

  31. E. H. Haug and J. A. Stovneng, Rev. Mod. Phys. 61, 917 (1989).

    Article  ADS  Google Scholar 

  32. V. S. Olkhovsky and E. Recami, Phys. Rep. 214, 339 (1992).

    Article  ADS  Google Scholar 

  33. E. Recami, J. Mod. Opt. 51, 913 (2004).

    ADS  Google Scholar 

  34. V. S. Olkhovsky, E. Recami, and G. Salesi, Europhys. Lett. 57, 879 (2002).

    Article  ADS  Google Scholar 

  35. V. A. Olkhovsky, E. Recami, and J. Jakiel, Phys. Rep. 398, 133 (2004).

    Article  ADS  Google Scholar 

  36. V. S. Olkhovsky, Phys. Usp. 54, 829 (2011).

    Article  ADS  Google Scholar 

  37. V. I. Vysotskii and A. A. Kornilova, Ann. Nucl. Energy 62, 626 (2013).

    Article  Google Scholar 

  38. V. I. Vysotskii and A. A. Kornilova, Curr. Sci. 108, 636 (2015).

    Google Scholar 

  39. A. A. Kornilova, V. I. Vysotskii, N. N. Sysoev, N. K. Litvin, V. I. Tomak, and A. A. Barzov, J. Surf. Invest.: X‑ray, Synchrotron Neutron Tech. 4, 1008 (2010).

    Article  Google Scholar 

  40. V. I. Vysotskii, V. P. Bugrov, A. A. Kornilova, R. N. Kuzmin, and S. I. Reyman, Hyperfine Interact. 107, 277 (1997).

    Article  ADS  Google Scholar 

  41. S. V. Adamenko and V. I. Vysotskii, Found. Phys. Lett. 19, 21 (2006).

    Article  Google Scholar 

  42. A. V. Gurevich, V. P. Antonova, A. P. Chubenko, A. N. Karashtin, G. G. Mitko, M. O. Ptitsyn, V. A. Ryabov, A. L. Shepetov, Yu. V. Shlyugaev, L. I. Vildanova, and K. P. Zybin, Phys. Rev. Lett. 108, 125001 (2012).

    Article  ADS  Google Scholar 

  43. B. Zh. Zalikhanov, Phys. Part. Nucl. 47, 108 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vysotskii.

Additional information

Translated by R. Tyapaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vysotskii, V.I., Vysotskyy, M.V. Features of Correlated States and a Mechanism of Self-Similar Selection of Nuclear Reaction Channels Involving Low-Energy Charged Particles. J. Exp. Theor. Phys. 128, 856–864 (2019). https://doi.org/10.1134/S1063776119040125

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776119040125

Navigation