Skip to main content
Log in

Mass splittings of nuclear isotopes in chiral solition approach

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The differences in the masses of isotopes with atomic numbers between ∼10 and ∼30 can be described within the chiral soliton model in satisfactory agreement with data. The rescaling of the model is necessary for this purpose—a decrease in the Skyrme constant by ∼30%, providing the “nuclear variant” of the model. The asymmetric term in the Weizsäcker-Bethe-Bacher mass formula for nuclei can be obtained as the isospin-dependent quantum correction to the nucleus energy. Some predictions of the binding energies of neutron-rich isotopes are made in this way from, e.g., 16Be, 19B to 31Ne or 32Na. The neutron-rich nuclides with high values of isospin are unstable relative to decay owing to strong interactions. The SK4 (Skyrme) variant of the model, as well as the SK6 variant (sixth-order term in the derivatives of the chiral field in the Lagrangian as soliton stabilizer), is considered; the rational-map approximation is used to describe multi-Skyrmions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. R. Skyrme, Proc. R. Soc. London, Ser. A 260, 127 (1961); Nucl. Phys. 31, 556 (1962).

    ADS  MATH  MathSciNet  Google Scholar 

  2. G. Adkins, C. Nappi, and E. Witten, Nucl. Phys. B 228, 552 (1983); G. Adkins and C. Nappi, Nucl. Phys. B 233, 109 (1984).

    Article  ADS  Google Scholar 

  3. I. Zahed and G. E. Brown, Phys. Rep. 142, 1 (1986); G. Holzwarth and B. Schwesinger, Rep. Prog. Phys. 49, 825 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  4. N. R. Walet, Nucl. Phys. A 586, 649 (1995).

    ADS  Google Scholar 

  5. L. Carson, Phys. Rev. Lett. 66, 1406 (1991); Nucl. Phys. A 535, 479 (1991); N. R. Walet, Nucl. Phys. A 606, 429 (1996); hep-ph/9603273.

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. V. B. Kopeliovich, Phys. At. Nucl. 56, 1084 (1993).

    Google Scholar 

  7. V. B. Kopeliovich and B. E. Stern, Pis’ma Zh. Éksp. Teor. Fiz. 45, 165 (1987) [JETP Lett. 45, 203 (1987)].

    Google Scholar 

  8. V. B. Kopeliovich, Yad. Fiz. 47, 1495 (1988) [Sov. J. Nucl. Phys. 47, 949 (1988)]; E. Braaten and L. Carson, Phys. Rev. D 38, 3525 (1988).

    Google Scholar 

  9. R. A. Leese, N. S. Manton, and B. J. Schroers, Nucl. Phys. B 442, 228 (1995).

    Article  ADS  Google Scholar 

  10. V. B. Kopeliovich, Yad. Fiz. 58, 1317 (1995) [Phys. At. Nucl. 58, 1237 (1995)].

    Google Scholar 

  11. The Dib-2γ Collab., Preprint No. E1-96-104, JINR (Joint Institute for Nuclear Research, Dubna, 1996); A. Khrykin et al., Phys. Rev. C 64, 034002 (2001); nucl-ex/0012011; nucl-ex/0211034.

  12. L. V. Fil’kov et al., Eur. Phys. J. A 12, 369 (2001); hep-ex/0006029.

    ADS  Google Scholar 

  13. V. B. Kopeliovich, Zh. Éksp. Teor. Fiz. 123, 891 (2003) [JETP 96, 782 (2003)].

    Google Scholar 

  14. C. F. von Weizsäcker, Z. Phys. 96, 431 (1935); H. A. Bethe and R. F. Bacher, Rev. Mod. Phys. 8, 82 (1936).

    MATH  Google Scholar 

  15. A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1969; Mir, Moscow, 1971).

  16. P. Möller, J. R. Nix, W. D. Myers, and W. J. Swiatecki, nucl-th/9308022; At. Data Nucl. Data Tables 59, 185 (1995).

    ADS  Google Scholar 

  17. G. J. Wagner et al., Phys. Rev. C 54, 1930 (1996); G. J. Wagner, presented at The Conference CIPANP-97, Big Sky, Montana, 1997.

    ADS  Google Scholar 

  18. J. E. Ungar et al., Phys. Lett. B 144, 333 (1984); A. V. Belozyorov et al., Nucl. Phys. A 477, 131 (1988).

    ADS  Google Scholar 

  19. T. P. Gorringe et al., Phys. Rev. C 40, 2390 (1989); L. Gilly et. al., Phys. Lett. 19, 335 (1965); R. Ya. Kezerashvili, Yad. Fiz. 44, 842 (1986) [Sov. J. Nucl. Phys. 44, 542 (1986)].

    Article  ADS  Google Scholar 

  20. R. Kalpakchieva, Yu. E. Penionzhkevich, and H. Bohlen, Fiz. Élem. Chast. At. Yadra 29, 832 (1998) [Phys. Part. Nucl. 29, 341 (1998)]; 30, 1429 (1999) [30, 627 (1999)]; R. Kalpakchieva and Yu. E. Penionzhkevich, Fiz. Élem. Chast. At. Yadra 33, 1447 (2002) [Phys. Part. Nucl. 33, 629 (2002)].

    Google Scholar 

  21. I. Floratos and B. M. A. G. Piette, Phys. Rev. D 64, 045009 (2001); hep-th/0103126.

  22. E. Witten, Nucl. Phys. B 223, 422, 433 (1983).

    ADS  MathSciNet  Google Scholar 

  23. C. Houghton, N. Manton, and P. Sutcliffe, Nucl. Phys. B 510, 507 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  24. R. A. Battye and P. M. Sutcliffe, Rev. Math. Phys. 14, 29 (2002).

    Article  MathSciNet  Google Scholar 

  25. V. B. Kopeliovich, Zh. Éksp. Teor. Fiz. 120, 499 (2001) [JETP 93, 435 (2001)].

    Google Scholar 

  26. A. M. Shunderuk, Phys. At. Nucl. 67, 748 (2004).

    Article  Google Scholar 

  27. C. L. Schat and N. N. Scoccola, Phys. Rev. D 62, 074010 (2000).

    Google Scholar 

  28. B. Schwesinger and H. Weigel, Phys. Lett. B 267, 438 (1991).

    ADS  Google Scholar 

  29. G. Audi and A. H. Wapstra, Nucl. Phys. A 595, 409 (1995).

    ADS  Google Scholar 

  30. W. K. Baskerville, hep-th/9906063; C. Barnes, W. K. Baskerville, and N. Turok, Phys. Lett. B 411, 180 (1997).

    ADS  Google Scholar 

  31. B. Moussalam, Ann. Phys. (N.Y.) 225, 264 (1993); F. Meier and H. Walliser, Phys. Rep. 289, 383 (1997).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kopeliovich, V.B., Shunderuk, A.M. & Matushko, G.K. Mass splittings of nuclear isotopes in chiral solition approach. Phys. Atom. Nuclei 69, 120–132 (2006). https://doi.org/10.1134/S1063778806010169

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778806010169

Keywords

Navigation