Skip to main content
Log in

On the implementation of a chain nuclear reaction of thermonuclear fusion on the basis of the p+11B process

  • Nuclei
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

Various theoretical and experimental schemes for implementing a thermonuclear reactor on the basis of the p+11B reaction are considered. They include beam collisions, fusion in degenerate plasmas, ignition upon plasma acceleration by ponderomotive forces, and the irradiation of a solid-state target from 11B with a proton beam under conditions of a Coulomb explosion of hydrogen microdrops. The possibility of employing ultra-short high-intensity laser pulses to initiate the p+11B reaction under conditions far from thermodynamic equilibrium is discussed. This and some other weakly radioactive thermonuclear reactions are promising owing to their ecological cleanness—there are virtually no neutrons among fusion products. Nuclear reactions that follow the p+11B reaction may generate high-energy protons, sustaining a chain reaction, and this is an advantage of the p+11B option. The approach used also makes it possible to study nuclear reactions under conditions close to those in the early Universe or in the interior of stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. S. Belyaev et al., Phys. Rev. E 72, 026406 (2005).

    Article  ADS  Google Scholar 

  2. C. Labaune et al., Nature Commun. 4, 2506 (2013).

    Article  ADS  Google Scholar 

  3. J. Nuckolls et al., Nature 239, 139 (1972).

    Article  ADS  Google Scholar 

  4. J. D. Lindl, Phys. Plasmas 2, 3933 (1995).

    Article  ADS  Google Scholar 

  5. S. Atzeni and J. Meyer-Ter-Vehn, The Physics of Inertial Fusion (Oxford Science Publ., 2004).

    Book  Google Scholar 

  6. G. A. Mourou et al., Opt. Commun. 285, 720 (2012).

    Article  ADS  Google Scholar 

  7. V. S. Belyaev, V. P. Krainov, V. S. Lisitsa, and A. P. Matafonov, Phys. Usp. 51, 793 (2008).

    Article  ADS  Google Scholar 

  8. L. Robson et al., Nature Phys. 3, 58 (2007).

    Article  ADS  Google Scholar 

  9. J. Fuchs, Nature Phys. 2, 48 (2006).

    Article  ADS  Google Scholar 

  10. V. S. Belyaev, A. P. Matafonov, S. M. Ribakov, et al., Phys. At. Nucl. 73, 1820 (2010).

    Article  Google Scholar 

  11. V. S. Belyaev, V. I. Vinogradov, A. P. Matafonov, et al., Phys. At. Nucl. 72, 1077 (2009)

    Article  Google Scholar 

  12. V. S. Belyaev, V. V. Bol’shakov, A. Yu. Kedrov, et al., RF Patent No. 2534507 (2014).

    Google Scholar 

  13. V. T. Voronchev and V. I. Kukulin, Phys. At. Nucl. 63, 2051 (2000).

    Article  Google Scholar 

  14. W. M. Nevins, J. Fusion Energy 17, 25 (1998).

    Article  ADS  Google Scholar 

  15. H. W. Becker, C. Rolfs, and H. P. Trautvetter, Z. Phys. A 327, 341 (1987).

    ADS  Google Scholar 

  16. W. M. Nevins and R. Swain, Nucl. Fusion 40, 865 (2000).

    Article  ADS  Google Scholar 

  17. D. C.Moreau, Nucl. Fusion 17, 13 (1977).

    Article  ADS  Google Scholar 

  18. J. M. Martinez-Val et al., Phys. Lett. A 216, 142 (1996).

    Article  ADS  Google Scholar 

  19. K. W. D. Ledingham and W. Galster, New J. Phys. 12, 045005 (2010).

    Article  ADS  Google Scholar 

  20. E. G. Adelberger et al., Rev. Mod. Phys. 83, 195 (2011).

    Article  ADS  Google Scholar 

  21. K. L. Nomoto et al., Nucl. Phys. A 777, 424 (2006).

    Article  ADS  Google Scholar 

  22. A. Coc et al., Astrophys. J. 744, 158 (2012).

    Article  ADS  Google Scholar 

  23. S. Kimura, A. Anzalone, and A. Bonasera, Phys. Rev. E 79, 038401 (2009).

    Article  ADS  Google Scholar 

  24. N. Rostoker, M. W. Binderbauer, and H. J.Monkhorst, Science 278, 1419 (1997).

    Article  ADS  Google Scholar 

  25. S. Son and N. J. Fisch, Phys. Lett. A 329, 76 (2004).

    Article  ADS  Google Scholar 

  26. H. Hora, Opt. Commun. 282, 4124 (2009).

    Article  ADS  Google Scholar 

  27. I. Last, S. Ron, and J. Jortner, Phys. Rev. A 83, 043202 (2011).

    Article  ADS  Google Scholar 

  28. M. Passoni et al., Phys. Rev. E 69, 026411 (2004).

    Article  ADS  Google Scholar 

  29. C. Labaune et al., Patent Appl. No. FR1252750 (2012).

    Google Scholar 

  30. F. Ajzenberg-Selove, Nucl. Phys. A 506, 1 (1990).

    Article  ADS  Google Scholar 

  31. S. Stave, Phys. Lett. B 696, 26 (2011).

    Article  ADS  Google Scholar 

  32. V. F. Dmitriev, Phys. At. Nucl. 72, 1165 (2009).

    Article  Google Scholar 

  33. A. F. Lifschitz, R. Farengo, and N. R. Arista, Phys. Plasmas 7, 3036 (2000).

    Article  ADS  Google Scholar 

  34. C. Angulo et al., Z. Phys. A 345, 231 (1993).

    Article  ADS  Google Scholar 

  35. F. C. Barker, Nucl. Phys. A 707, 277 (2002).

    Article  ADS  Google Scholar 

  36. S. Kimura and A. Bonasera, Phys. Rev. Lett. 93, 262502 (2004).

    Article  ADS  Google Scholar 

  37. M. Roth et al., Phys. Rev. Lett. 86, 436 (2001).

    Article  MATH  ADS  Google Scholar 

  38. V. S. Belyaev, P. A. Batishchev, V. V. Bolshakov, et al., Phys. At. Nucl. 76, 404 (2013).

    Article  MATH  Google Scholar 

  39. R. A. Dayras, Z. E. Switkowski, and T. A. Tombrello, Nucl. Phys. A 261, 365 (1976).

    Article  ADS  Google Scholar 

  40. T. R. Wang, R. B. Vogelaar, and R. W. Kavanagh, Phys. Rev. C 43, 883 (1991).

    Article  ADS  Google Scholar 

  41. Physical Encyclopedy, Ed. by A. M. Prokhorov (Bolsh. Ross. Entsiklopediya, Moscow, 1992), p. 279 [in Russian].

  42. Inertial Confinement Nuclear Fusion: Modern State and Prospects for Power Engineering, Ed. by B. Yu. Sharkov (Fizmatlit, Moscow, 2005) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Krainov.

Additional information

Original Russian Text © V.S. Belyaev, V.P. Krainov, B.V. Zagreev, A.P. Matafonov, 2015, published in Yadernaya Fizika, 2015, Vol. 78, No.s. 7–8, pp. 580–590.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belyaev, V.S., Krainov, V.P., Zagreev, B.V. et al. On the implementation of a chain nuclear reaction of thermonuclear fusion on the basis of the p+11B process. Phys. Atom. Nuclei 78, 537–547 (2015). https://doi.org/10.1134/S1063778815040031

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778815040031

Keywords

Navigation