Skip to main content
Log in

Application of nuclear-physics methods in space materials science

  • Elementary Particles and Fields
  • Theory
  • Published:
Physics of Atomic Nuclei Aims and scope Submit manuscript

Abstract

The brief history of the development of investigations at the Skobeltsyn Institute of Nuclear Physics, Moscow State University (SINP MSU) in the field of space materials science is outlined. A generalized scheme of a numerical simulation of the radiation impact on spacecraft materials and elements of spacecraft equipment is examined. The results obtained by solving some of the most important problems that modern space materials science should address in studying nuclear processes, the interaction of charged particles with matter, particle detection, the protection from ionizing radiation, and the impact of particles on nanostructures and nanomaterials are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. N. Vernov, P. V. Vakulov, and Yu. I. Logachev, in Achievements of USSR in the Study of Cosmic Space: First Ten Cosmic Years, 1957–1967, Collection of Articles (Nauka, Moscow, 1968), p. 106 [in Russian].

    Google Scholar 

  2. L. S. Novikov and M. I. Panasyuk, Vopr. At. Nauki Tekh., Ser. Fiz. Rad. Vozdeistv. Radioelektron. Appar., No. 4, 3 (2002).

    Google Scholar 

  3. S. N. Vernov, N. L. Grigorov, Yu. I. Logachev, and A. E. Chudakov, Sov. Phys. Dokl. 3, 617 (1958).

    ADS  Google Scholar 

  4. Yu. I. Logachev, 40 Years of Cosmic Era in SINPh MSU (Mosk.Gos. Univ., Moscow, 1998) [inRussian].

    Google Scholar 

  5. A. I. Akishin and L. S. Novikov, in Encyclopedy of Lomonosov Moscow State University. Skobeltsyn Institute of Nuclear Physics, Collection of Articles (Biblion–Russkaya kniga, Moscow, 2006), p. 55 [in Russian].

    Google Scholar 

  6. L. S. Novikov, Moscow Univ. Phys. Bull. 65, 259 (2010).

    Article  Google Scholar 

  7. Radiation Conditions in Cosmic Space, Ed. by M. I. Panasyuk (Biblion–Russkaya kniga, Moscow, 2006), p. 132 [in Russian].

  8. Igor Borisovich Teplov: To 80th Anniversary of Birth, Ed. by N. S. Zelenskaya, M. I. Panasyuk, and E. A. Romanovsky (Univ. Kniga,Moscow, 2008), p. 113 [in Russian].

  9. T. T. Böhlen et al., At. Data Nucl. Data Sheets 120, 211 (2014)

    Article  ADS  Google Scholar 

  10. A. Ferrari, P. R. Sala, A. Fasso, and J. Ranft, FLUKA: a Multi-Particle Transport Code (CERN, Geneva, 2005), INFN/TC_05/11, SLACR-773

    Book  Google Scholar 

  11. http://www.fluka.org/fluka.php.

  12. R. Brun et al., GEANT. Detector Description and Simulation Tool. User’s Guide (CERN, Geneva, 1993).

    Google Scholar 

  13. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. A 506, 250 (2003).

    Article  ADS  Google Scholar 

  14. https://twiki.cern.ch/twiki/bin/view/Geant4Lowe-MuElec.

  15. S. Incerti et al., Med. Phys. 37, 4692 (2010).

    Article  Google Scholar 

  16. Geant4 Physics Reference Manual, Version Geant4 10.1 (2014). http://geant4.web.cern.ch/geant4/UserDocumentation/ UsersGuides/PhysicsReferenceManual/fo/ PhysicsReferenceManual.pdf.

  17. F. Lei et al., IEEE Trans. Nucl. Sci. 49, 2788 (2002).

    Article  ADS  Google Scholar 

  18. F. Lei and P. Truscott, Geant4-Based Microdosimetry Analysis Tool. Software User’s Manual (QinetiQ, Farnborough, 2007).

    Google Scholar 

  19. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).

    Article  ADS  Google Scholar 

  20. W. Möller and W. Eckstein, Nucl. Instrum. Methods Phys. Res. B 2, 814 (1984).

    Article  ADS  Google Scholar 

  21. A. A. Makletsov, V. N. Mileev, L. S. Novikov, and V. V. Sinolits, Inzh. Ekol., No. 1, 39 (1997).

    Google Scholar 

  22. www.spenvis.oma.be/help/models/ssat.html.

  23. J. L. Shinn and J. W. Wilson, NASA Technical Paper 3147 (NASA, 1992).

    Google Scholar 

  24. A. I. Chumakov, Cosmic Radiation Effect on Integral Circuits (Radio Svyaz’, Moscow, 2004).

    Google Scholar 

  25. I. N. Tsymbalov, K. A. Ivanov, R. V. Volkov, A. B. Savel’ev, L. S. Novikov, L. I. Galanina, N. P. Chirskaya, V. Yu. Bychenkov, and A. I. Chumakov, Fiz. Khim. Obrab.Mater., No. 1, 25 (2016).

    Google Scholar 

  26. T. Bion and J. Bourrieau, IEEE Trans. Nucl. Sci. 36, 2281 (1989).

    Article  ADS  Google Scholar 

  27. A. Akkerman, J. Barak, and Y. Lifshitz, IEEE Trans. Nucl. Sci. 49, 1539 (2002).

    Article  ADS  Google Scholar 

  28. V. Andersen et al., Adv. Space Res. 34, 1302 (2004).

    Article  ADS  Google Scholar 

  29. http://www.nndc.bnl.gov/sigma/getInterpreted.jsp?-evalid=10917&mf=6&mt=5.

  30. ftp://ftp.nrg.eu/pub/www/talys/tendl2014/tendl-2014.html.

  31. N. V. Kuznetsov, Vopr. At. Nauki Tekh., Ser.: Fiz. Rad. Vozdeistv. Radioelektron. Appar., Nos. 1–2, 46 (2007).

    Google Scholar 

  32. E. N. Voronina, L. I. Galanina, N. S. Zelenskaya, V.M. Lebedev, V.N. Mileev, L. S. Novikov,V. V. Sinolits, and A. V. Spassky, Bull. Russ. Acad. Sci.: Phys. 73, 197 (2009).

    Article  Google Scholar 

  33. H. Nishioka, J. J. M. Verbaarschot, H. A. Weidenmüller, and S. Yoshida, Ann. Phys. (N. Y.) 172, 67 (1986).

    Article  ADS  Google Scholar 

  34. M. Blann and M. B. Chadwick, Phys. Rev. C 57, 233 (1998).

    Article  ADS  Google Scholar 

  35. http://www.nndc.bnl.gov/empire/.

  36. E. N. Voronina and N. P. Chirskaya, Fiz. Khim. Obrab.Mater., No. 5, 23 (2013).

    Google Scholar 

  37. O V. Chubarov, A. S. Alimov, and V. I. Shvedunov, IEEE Trans. Nucl. Sci. 44, 1037 (1997).

    Article  ADS  Google Scholar 

  38. V. V. Gromov, Electrical Charge in Irradiated Materials (Energoizdat, Moscow, 1982) [in Russian].

    Google Scholar 

  39. N. A. Vlasova, L. S. Novikov, I. A. Rubinshtein, A.V. Spassky, and N. P. Chirskaya, Fiz. Khim.Obrab. Mater., No. 6, 32 (2013).

    Google Scholar 

  40. ISO/TS 27687: Nanotechnologies–Terminology and Definitions for Nano-Objects (2008).

  41. Nanoscale Science and Technology, Ed. by R. W. Kelsall, I. W. Hamley, and M. Geoghegan (Wiley, Hoboken, NJ, 2005).

  42. M. S. P. Shaffer and J. K. W. Sandler, Processing and Properties of Nanocomposites (World Scientific, Singapore, 2006), Chap.1.

    Google Scholar 

  43. K. A. Watson and J. W. Connell, in Carbon Nanotechnology: Recent Developments in Chemistry, Physics, Materials Science, and Device Applications, Ed. by L. Dai (Elsevier, Amsterdam, 2006), p.677.

  44. I. P. Suzdalev, Nanotechnology: Physicochemistry of Nanoclusters, Nanostructures and Nanomaterials, 2nd ed. (Librokom, Moscow, 2009) [in Russian].

    Google Scholar 

  45. L. S. Novikov and E. N. Voronina, Prospects of Nanomaterial Application in Cosmic Technology (Universitetskaya kniga, Moscow, 2008) [in Russian].

    Google Scholar 

  46. A. V. Krasheninnikov and K. Nordlund, J. App. Phys. 107, 071301 (2010).

    Article  ADS  Google Scholar 

  47. G. Ackland, Science 327, 1587 (2010).

    Article  Google Scholar 

  48. Y. Zhang and W. J. Weber, in Ion Beams in Nanoscience and Technology, Ser. Particle Acceleration and Detection, Ed. by R. Hellborg et al. (Springer, Berlin, Heidelberg, 2009).

  49. I. A. Ovid’ko and A. G. Sheinerman, Appl. Phys. A 81, 1083 (2005).

    Article  ADS  Google Scholar 

  50. R. A. Andrievskii, Phys. Met. Metallogr. 110, 229 (2010).

    Article  ADS  Google Scholar 

  51. L. S. Novikov, V. N. Mileev, E. N. Voronina, L. I. Galanina, A. A. Makletsov, and V. V. Sinolits, J. Surf. Invest.: X-Ray, Synchrotr., Neutron Tech. 3, 199 (2009).

    Article  Google Scholar 

  52. K. Nordlund and F. Djurabekova, J. Comput. Electron. 13, 122 (2014).

    Article  Google Scholar 

  53. R. B. Ross and S. Mohanty, Multiscale Simulation Methods for Nanomaterials (Wiley, Hoboken, 2008), Chap.1.

    Google Scholar 

  54. M. Bender, P.-H. Heenen, and P.-G. Reinhard, Rev. Mod. Phys. 75, 121 (2003).

    Article  ADS  Google Scholar 

  55. P. Hohenberg and W. Kohn, Phys. Rev. B 136, 864 (1964)

    Article  ADS  Google Scholar 

  56. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  ADS  Google Scholar 

  57. Extended Density Functionals in Nuclear Structure Physics, Ed. by G. A. Lalazissis, P. Ring, and D. Vretenar, Lect. Notes Phys. 641 (2004).

  58. Th. Frauenheim et al., J. Phys.: Condens. Matter 14, 3015 (2002).

    ADS  Google Scholar 

  59. E. N. Voronina and L. S. Novikov, Bull. Russ. Acad. Sci.: Phys. 77, 814 (2013).

    Article  Google Scholar 

  60. T. K. Minton and D. J. Garton, in Chemical Dynamics in Extreme Environments, Ed. by R. A. Dressler, Adv. Ser. Phys. Chem. 11, 420 (2001).

    Article  Google Scholar 

  61. V. N. Chernik, in Proceedings of the 7th International Symposium onMaterials in Space Environment, Toulouse, 1997, Ed. by T. D. Guyenne, ESASP-399 (European Space Agency, France, Noordwijk, 1997), p.237.

  62. N. G. Chechenin, P. N. Chernykh, E. A. Vorobyeva, and O. S. Timofeev, Appl. Surf. Sci. 275, 217 (2013).

    Article  ADS  Google Scholar 

  63. L. S. Novikov, E. N. Voronina, V. N. Chernik, N. G. Chechenin, A. V. Makunin, and E. A. Vorob’eva, J. Surf. Invest.: X-Ray, Synchrotr., Neutron Tech. 10, 617 (2016).

    Article  Google Scholar 

  64. L. S. Novikov, E. N. Voronina, V. N. Chernik, K. B. Vernigorov, and M. Yu. Yablokova, J. Space Rockets 53, 1012 (2016).

    Article  ADS  Google Scholar 

  65. D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature 458, 872 (2009).

    Article  ADS  Google Scholar 

  66. E. N. Voronina and L. S. Novikov, RSC Adv. 3, 15362 (2013).

    Article  Google Scholar 

  67. E. N. Voronina, L. S. Novikov, V. N. Chernik, N. P. Chirskaya, K. B. Vernigorov, G. G. Bondarenko, and A. I. Gaidar, Inorg. Mater.: Appl. Res. 3, 95 (2012).

    Article  Google Scholar 

  68. K. B. Vernigorov, A. Yu. Alent’ev, A. M. Muzafarov, L. S. Novikov, and V. N. Chernik, J. Surf. Invest.: Xray, Synchrotr., Neutron Tech. 5, 263 (2011).

    Article  Google Scholar 

  69. L. S. Novikov, E. N. Voronina, V. N. Chernik, and L. A. Zhilyakov, J. Surf. Invest.: X-ray, Synchrotr., Neutron Tech. 10, 829 (2016).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. S. Novikov.

Additional information

Original Russian Text © L.S. Novikov, E.N. Voronina, L.I. Galanina, N.P. Chirskaya, 2017, published in Yadernaya Fizika, 2017, Vol. 80, No. 4, pp. 354–367.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, L.S., Voronina, E.N., Galanina, L.I. et al. Application of nuclear-physics methods in space materials science. Phys. Atom. Nuclei 80, 666–678 (2017). https://doi.org/10.1134/S1063778817040172

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063778817040172

Navigation