Skip to main content
Log in

Effect of Dimensional Changes on Plasma Characteristics in Electrothermal Capillary Discharges for Optimized Performance in Fusion Pellet Injection

  • Low-Temperature Plasma
  • Published:
Plasma Physics Reports Aims and scope Submit manuscript

Abstract

Geometrical changes in capillary discharges influence the plasma properties and can control exit parameters to certain desired values. For a fixed capillary radius of 2 mm and a 72-μs 43.9-kA peak discharge current, the plasma temperature is about 2.7 eV for different capillary lengths due to the constant input energy, while the number densities tend to saturate for capillary lengths greater than 12 cm. The electrical conductivity reaches 4.02 × 104 Ω−1 m−1 and then tends to saturate for 9-cm capillary length. The maximum bulk velocity at the capillary exit slightly increases with the increase in the capillary length from 6.15 to 6.26 km/s for lengths below 18 cm and decreases to 5.88 km/s for longer capillaries due to the higher amount of ablated mass and increased drag forces. For a 9-cm length with the same 72-μs 43.9-kA peak discharge current, the increase in the capillary radius reduces the energy density, which in turn reduces the total ablate mass, plasma density, electrical conductivity, and exit pressure. It is shown that the plasma temperature decreases from 4.6 to 2.1 eV by increasing the capillary radius and radiant heat flux also drops from 463 to 18.1 GW/m2. The exit bulk velocity drops from 8.7 to 5.3 km/s as the radius increases from 0.5 to 3.6 mm, respectively. The design features of a capillary discharge can be adjusted for the radius and length, to produce specific plasma parameters for desired applications. Scaling laws relating exit peak plasma parameters to radius and length are obtained to facilitate quick estimate of plasma parameters. The validation of this model has been confirmed by confronting with experimental measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Gilligan, M. Bourham, O. Hankins, O. Auciello, S. Tallavarjula, and R. Mohanti, IEEE Trans. Mag. 27, 476 (1991).

    Article  ADS  Google Scholar 

  2. M. A. Bourham, O. E. Hankins, J. G. Gilligan, J. D. Hurley, and J. R. Earnhart, IEEE Trans. Mag. 29, 1107 (1993).

    Article  ADS  Google Scholar 

  3. M. A. Bourham, J. G. Gilligan, M. L. Huebschman, D. Lianos, and P. D. Aaltos, IEEE Trans. Mag. 31, 678 (1995)

    Article  ADS  Google Scholar 

  4. M. Keidar and I. D. Boyd, J. Appl. Phys. 99, 053301 (2006).

    Article  ADS  Google Scholar 

  5. M. R. Zaghloul, M. Al-Naiemy, and M. A. Bourham, IEEE Trans. Plasma Sci. 37, 1626 (2009).

    Article  ADS  Google Scholar 

  6. D. Huang, L. Yang, P. Huo, J. Ma, H. Guo, R. Xu, and W. Ding., Phys. Plasmas 23, 093517(2016).

    Google Scholar 

  7. W. Wang, L. Kong, J. Geng, F. Wei, and G. Xia, J. Phys. D 50, 074005 (2017).

    Article  ADS  Google Scholar 

  8. K. Kim, J. Therm. Spray Technol. 17, 517 (2008).

    Article  ADS  Google Scholar 

  9. L. Pekker, J. Propul. Power 25, 958(2009).

    Article  Google Scholar 

  10. J. D. Hurley, M. A. Bourham, and J. G. Gilligan, IEEE Trans. Mag. 31, 616 (1995).

    Article  ADS  Google Scholar 

  11. H. H. Ngo, M. A. Bourham and J. M. Doster in Proceedings of the 35th JANNAF Combustion Subcommittee Meeting, Tucson, AZ, 1998, Vol. 1, p. 187.

    Google Scholar 

  12. L. Winfrey, J. G. Gilligan, A. V. Saveliev, M. Abd Al-Halim, and M. A. Bourham, IEEE Trans. Plasma Sci. 4, 843 (2012).

    Article  ADS  Google Scholar 

  13. E. Z. Ibrahim, J. Phys. D 13, 2045 (1980).

    Article  ADS  Google Scholar 

  14. R. B. Mohanti and J. G. Gilligan, IEEE Trans. Mag. 29, 585 (1993).

    Article  ADS  Google Scholar 

  15. L. L. Raja, P. L. Varghese, and D. E. Wilson, IEEE Trans. Mag. 33, 316 (1997).

    Article  ADS  Google Scholar 

  16. K. Kim, IEEE Trans. Plasma Sci. 31, 729 (2003).

    Article  ADS  Google Scholar 

  17. M. A. Bourham, O. E. Hankins, O. Auciello, J. M. Stock, B. W. Wehring, R. B. Mohanti, and J. G. Gilligan, IEEE Trans. Plasma Sci. 17, 386 (1989).

    Article  ADS  Google Scholar 

  18. A. Hassanein and I. Konkashbaev, Fus. Eng. Des. 51–52, 681 (2000).

    Article  Google Scholar 

  19. A. A. Pshenov, A. A. Eksaeva, S. I. Krasheninnikov, and E. D. Marenkov, Phys. Procedia. 71, 14 (2015).

    Article  ADS  Google Scholar 

  20. J. G. Gilligan, M. A. Bourham, O. E. Hankins, and W. H. Eddy, IEEE Trans. Mag. 29, 1153 (1993).

    Article  ADS  Google Scholar 

  21. T. Sueda, S. Katsuki, and H. Akiyama, IEEE Trans. Mag. 33, 334 (1997).

    Article  ADS  Google Scholar 

  22. E. Ya. Shcolnikov, S. P. Maslennikov, N. N. Netchaev, V. N. Nevolinand, and L. A. Sukhanova, IEEE Trans. Mag. 39, 314 (2003).

    Article  ADS  Google Scholar 

  23. P. Lee, Chin. J. Phys. 4, 1 (1966).

    Google Scholar 

  24. M. Seeger, L. Niemeyer, T. Christen, M. Schwinne, and R. Dommerque, J. Phys. D 39, 2180 (2006).

    Article  ADS  Google Scholar 

  25. R. B. Mohanti, J. G. Gilligan, and M. A. Bourham, Phys. Fluids B 3, 3046 (1991).

    Article  ADS  Google Scholar 

  26. N. Al Mousa, L. Winfrey, J. Gilligan, and M. Bourham, J. Nucl. Energy Sci. Power Gener. Technol. 3, 1000116 (2014).

    Google Scholar 

  27. P. Kovitya and J. J. Lowke, J. Phys. D 17, 1197 (1984).

    Article  ADS  Google Scholar 

  28. J. Gilligan and R. Mohanti, IEEE Trans. Plasma Sci. 18, 190 (1990).

    Article  ADS  Google Scholar 

  29. C. B. Ruchti and L. Niemeyer, IEEE Trans. Plasma Sci. 14, 423 (1986).

    Article  ADS  Google Scholar 

  30. J. Gilligan, M. Bourham, O. Hankins, W. Eddy, J. Hurley, and D. Black, J. Nucl. Mater. 196, 596 (1992).

    Article  ADS  Google Scholar 

  31. L. Muller, J. Phys. D 26, 1253 (1993).

    Article  ADS  Google Scholar 

  32. M. R. Zaghloul, M. A. Bourham, and J. M. Doster, J. Phys. D 34, 772 (2001).

    Article  ADS  Google Scholar 

  33. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 2008; Dover, New York, 2002), Vol. 1.

    Google Scholar 

  34. J. Yong and L. Baoming, Plasma Sci. Technol. 16, 50 (2014).

    Article  Google Scholar 

  35. Y. Jin and B. Li., IEEE Trans. Plasma Sci. 41, 1112 (2013).

    Article  ADS  Google Scholar 

  36. P. Kovitya, IEEE Trans. Plasma Sci. 13, 587 (1985).

    Article  ADS  Google Scholar 

  37. P. P. Vergara, J. Gilligan, L. Winfrey, and M. Bourham, IEEE Trans. Plasma Sci. 43, 3645 (2015).

    Article  ADS  Google Scholar 

  38. J. Yong, N. Yan-jie, L. Hai-yuan, and L. Bao-ming, Defence Technol. 12, 96 (2016).

    Article  Google Scholar 

  39. G. L. Katulka, W. F. Oberle, G. P. Wren, J. Okamitsu, and N. A. Messina, IEEE Trans. Mag. 33, 299 (1997).

    Article  ADS  Google Scholar 

  40. M. A. Abd Al-Halim and M. A. Bourham, J. Fus. Energy 33, 258 (2014).

    Article  Google Scholar 

  41. A. Ya. Ender, V. I. Kuznetsov, I. N. Kolyshkin, and A. N. Shchetinina, Open Plasma Phys. 4, 40 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Abd Al-Halim.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd Al-Halim, M.A., Bourham, M.A. Effect of Dimensional Changes on Plasma Characteristics in Electrothermal Capillary Discharges for Optimized Performance in Fusion Pellet Injection. Plasma Phys. Rep. 44, 870–877 (2018). https://doi.org/10.1134/S1063780X18090015

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063780X18090015

Navigation