Skip to main content
Log in

Specific Features of the Electron Structure of ZnTPP Aggregated Forms: Data of Optical Measurements and Quantum-Chemical Calculations

  • AMORPHOUS, VITREOUS, AND ORGANIC SEMICONDUCTORS
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Zinc tetraphenylporphyrin (ZnTPP) films and ZnTPP-based composites are promising materials of organic photonics. Porphyrins are inclined towards self-assembly and the formation of molecular ensembles or differently structured aggregates. The energies of the formation of aggregates and ordered structures and modifications of their electron structures compared to that of a free ZnTPP molecule have not been adequately explored. In the study, the first comprehensive investigation of the structure, absorption and luminescence spectra, and photoluminescence kinetics of structurally perfect ZnTPP thin films produced under quasi-equilibrium conditions in vacuum is conducted. It is shown that changes in the absorption spectra and the red shift of the luminescence spectra of films by 0.15 eV from the spectra observed for ZnTPP solutions in toluene can be interpreted as a result of the formation of an ordered thin-film structure through the dimerization of porphyrin planar molecules under nearly equilibrium conditions. The optimal geometric structure, the energy of the ground state, and the electronic spectrum of excitations of the dimerized (ZnTPP)2 state are calculated in the context of density functional theory and time-dependent density functional theory. The energy gain on the formation of a dimer of symmetry Ci compared to two separate molecules is 0.23 eV per dimer; the HOMO–LUMO gap for the dimer is decreased by 70 meV. The radiative emission time in the ordered solid phase is an order of magnitude shorter than that in the solution in toluene and corresponds to 277 ps, which is typical of J aggregates of porphyrins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. Suzuki, K. Nishimura, and T. Oku, Electronics 3, 112 (2014).

    Article  Google Scholar 

  2. M. Jurow, A. E. Schuckman, J. D. Batteas, and C. M. Drain, Coord. Chem. Rev. 254, 2297 (2010).

    Article  Google Scholar 

  3. C. Trinh, M. T. Whited, A. Steiner, C. J. Tassone, M. F. Toney, and M. E. Thompson, Chem. Mater. 24, 2583 (2012).

    Article  Google Scholar 

  4. M. G. Walter, A. B. Rudine, and C. C. Wamser, J. Porphyr. Phthalocyan. 14, 759 (2010).

    Article  Google Scholar 

  5. M. A. Elistratova, I. B. Zakharova, N. M. Romanov, V. Yu. Panevin, and O. E. Kvyatkovskii, Semiconductors 50, 1191 (2016).

    Article  ADS  Google Scholar 

  6. J. G. Woller, J. K. Hannestad, and B. Albinsson, J. Am. Chem. Soc. 135, 2759 (2013).

    Article  Google Scholar 

  7. N. Aratani, D. Kim, and A. Osuka, Acc. Chem. Res. 42, 1922 (2009).

    Article  Google Scholar 

  8. C. Trinh, M. T. Whited, A. Steiner, C. J. Tassone, M. F. Toney, and M. E. Thompson, Chem. Mater. 24, 2583 (2012).

    Article  Google Scholar 

  9. H. M. Zeyada, M. M. Makhlouf, and M. A. Ali, Jpn. J. Appl. Phys. 55, 022601 (2016).

    Article  ADS  Google Scholar 

  10. V. V. Apanasovich, E. G. Novikov, N. N. Yatskov, R. B. M. Koehorst, T. J. Schaafsma, and A. van Hoek, J. Appl. Spectrosc. 66, 613 (1999).

    Article  ADS  Google Scholar 

  11. G. Sedghi, V. M. Garcia-Suarez, L. J. Esdaile, H. L. Anderson, C. J. Lambert, S. Martin, and J. E. Macdonald, Nat. Nanotechnol. 6, 517 (2011).

    Article  ADS  Google Scholar 

  12. C. K. Yong, P. Parkinson, D. V. Kondratuk, W. H. Chen, A. Stannard, A. Summerfield, and L. M. Herz, Chem. Sci. 6, 181 (2015).

    Article  Google Scholar 

  13. C. J. Medforth, Z. Wang, K. E. Martin, Y. Song, J. L. Jacobsen, and J. A. Shelnutt, Chem. Commun. 47, 7261 (2009).

    Article  Google Scholar 

  14. H. L. Anderson, Inorg. Chem. 33, 972 (1994).

    Article  Google Scholar 

  15. F. V. Camargo, H. L. Anderson, S. R. Meech, and I. A. Heisler, J. Phys. Chem. B 119, 14660 (2015).

    Article  Google Scholar 

  16. Y. Li, W. W. Han, and M. X. Liao, Acta Phys.-Chim. Sin. 25, 2493 (2009).

    Google Scholar 

  17. X. L. Zhang, J. W. Jiang, Y. T. Liu, S. T. Lou, C. L. Gao, and Q. Y. Jin, Sci. Rep. 6, 22756 (2016).

    Article  ADS  Google Scholar 

  18. M. S. Liao and S. Scheiner, J. Chem. Phys. 117, 205 (2002).

    Article  ADS  Google Scholar 

  19. M. P. Balanay and D. H. Kim, Phys. Chem. Chem. Phys. 10, 5121 (2008).

    Article  Google Scholar 

  20. A. Irfan, N. Hina, A. G. Al-Sehemi, and A. M. Asiri, J. Mol. Model. 18, 4199 (2012).

    Article  Google Scholar 

  21. C. Trinh, M. T. Whited, A. Steiner, C. J. Tassone, M. F. Toney, and M. E. Thompson, Chem. Mater. 24, 2583 (2012).

    Article  Google Scholar 

  22. G. L. Perlovich, Extended Abstract of Doctoral Dissertation (Ivanovo, 2001).

  23. R. T. Kuznetsova, E. G. Ermolina, R. M. Gadirov, G. V. Mayer, N. N. Semenishin, N. V. Rusakova, and Y. V. Korovin, High Energ. Chem. 44, 134 (2010).

    Article  Google Scholar 

  24. N. S. Enikolopyan, Porphyrins: Spectroscopy, Electrochemistry, Application (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  25. R. L. Brookfield, H. Ellul, A. Harriman, and G. Porter, J. Chem. Soc. Faraday Trans. 2 82, 219 (1986).

    Article  Google Scholar 

  26. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  27. A. D. Becke, Phys. Rev. A 38, 3098 (1988).

    Article  ADS  Google Scholar 

  28. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  29. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 03, Rev. B.05 (Gaussian, Pittsburgh, PA, 2003).

  30. P. Elliott, F. Furche, and K. Burke, Rev. Comput. Chem. 26, 91 (2009).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Zakharova.

Additional information

Translated by E. Smorgonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zakharova, I.B., Elistratova, M.A., Romanov, N.M. et al. Specific Features of the Electron Structure of ZnTPP Aggregated Forms: Data of Optical Measurements and Quantum-Chemical Calculations. Semiconductors 52, 1708–1714 (2018). https://doi.org/10.1134/S1063782618130237

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782618130237

Navigation