Skip to main content
Log in

Behavior of the nickel-titanium alloys with the shape memory effect under conditions of shock wave loading

  • Phase Transitions
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The behavior of the Ti51.1Ni48.9 and Ti49.4Ni50.6 alloys with shape memory effects has been studied under submicrosecond shock wave loading in the temperature range from −80 to 160°C, which includes both the regions of the stable state of the specimens in the austenite and martensite phases and the regions of thermoelastic martensitic transformations. The grain size of the studied alloys varies from initial values 15–30 to 0.05–0.30 μm. The dependences of the dynamic elastic limit on the temperature and on the elemental composition are similar to the dependences of the yield stress of these alloys under low strain rate loading. The rarefaction shock wave formation as a consequence of the pseudoelastic behavior of the alloy during a reversible martensitic transformation has been revealed. A decrease in the grain size leads to an increase in the dynamic elastic limit and decreases the temperatures of martensitic transformations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Y. Li and R. Liu, Wear 225–229, 777 (1999).

    Article  Google Scholar 

  2. D. Y. Li, Wear 255, 617 (2003).

    Article  Google Scholar 

  3. W. W. Chen, Q.-P. Wu, J. H. Kang, and N. A. Winfree, Int. J. Solid Struct. 38, 8989 (2001).

    Article  Google Scholar 

  4. D. C. Lagoudas, K. Ravi Chandar, K. Sarh, and P. Popov, Mech. Mater. 35, 689 (2003).

    Article  Google Scholar 

  5. A. M. Thakur, N. N. Thadhani, and R. B. Schwarz, in Proceedings of the American Physical Society Topical Conference “Shock Compression of Condensed Matter-1989,” Albuquerque, New Mexico, United States, August 14–17, 1989, Ed. by S. C. Schmidt, J. N. Johnson, and L. W. Davison (Elsevier, Amsterdam, 1990), p. 139.

    Google Scholar 

  6. J. C. Escobar, R. J. Clifton, and S.-Y. Yang, in Proceedings of the American Physical Society Topical Conference “Shock Compression of Condensed Matter-1999,” Snowbird, Utah, United States, June 27–July 2, 1999, Ed. by M. D. Furnish, L. C. Chabildas, and R. S. Hixson (American Institute of Physics, New York, 2000), p. 267.

    Google Scholar 

  7. J. C. F. Millett, N. K. Bourne, G. T. Gray III, and G. S. Stevens, in Proceedings of the American Physical Society Topical Conference “Shock Compression of Condensed Matter-2001,” Atlanta, Georgia, United States, June 24–29, 2001, Ed. by M. D. Furnish, N. N. Thadhani, and Y. Horie (American Institute of Physics, New York, 2002), p. 579.

    Google Scholar 

  8. Titanium Nickelide Shape Memory Alloys, Part 1: Structure, Phase Transformations and Properties, Ed. by V. G. Pushin (Ural Branch of the Russian Academy of Sciences, Yekaterinburg, 2006) [in Russian].

    Google Scholar 

  9. K. Otsuka, Y. Suzuki, K. Shimizu, Y. Sekiguchi, G. Tadaki, T. Honma, and S. Miyazaki, Shape Memory Alloys, Ed. by H. Funakubo (Kyoto University, Kyoto, 1984).

    Google Scholar 

  10. V. N. Khachin, V. G. Pushin, and V. V. Kondrat'ev, Titanium Nickelide: Structure and Properties (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  11. V. G. Pushin, V. V. Kondrat'ev, and V. N. Khachin, Pretransition Phenomena and Martensitic Transformations (Ural Branch Russian Academy of Sciences, Yekaterinburg, 1998) [in Russian].

    Google Scholar 

  12. G. I. Kanel', S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena and the Properties of Condensed Matter (Yanus-K, Moscow, 1996; Springer, New York, 2004).

    Google Scholar 

  13. V. G. Pushin, V. V. Stolyarov, R. Z. Valiev, T. C. Lowe, and Y. T. Zhu, Mater. Sci. Eng., A 410–411, 386 (2005).

    Google Scholar 

  14. E. F. Dudarev, R. Z. Valiev, Yu. R. Kolobov, A. I. Lotkov, V. G. Pushin, G. P. Bakach, D. V. Gunderov, A. P. Dyupin, and N. N. Kuranova, Fiz. Met. Metalloved. 107(3), 298 (2009) [Phys. Met. Metalloved. 107 (3), 298 (2009)].

    Google Scholar 

  15. V. G. Pushin, in Proceedings of the International Conference “Nanomaterials by Severe Plastic Deformation,” 2004, Ed. by M. Zehetbauer and R. Valiev (Wiley, Weinheim, 2004), p. 822.

    Google Scholar 

  16. S. V. Razorenov, G. I. Kanel', and V. E. Fortov, Pis'ma Zh. Eksp. Teor. Fiz. 80(5), 395 (2004) [JETP Lett. 80 (5), 348 (2004)].

    Google Scholar 

  17. G. I. Kanel', S. V. Razorenov, A. S. Savinykh, E. B. Zaretskii, and Yu. R. Kolobov, Preprint No. 1-478, OIVT RAN (Scientific Association for High Temperatures, Russian Academy of Sciences, Moscow, 2004).

    Google Scholar 

  18. R. Z. Valiev and I. V. Aleksandrov, Nanostructured Materials Produced by Severe Plastic Deformation (Logos, Moscow, 2000) [in Russian].

    Google Scholar 

  19. L. M. Barker and R. E. Hollenback, J. Appl. Phys. 43, 4669 (1972).

    Article  ADS  Google Scholar 

  20. T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov, and A. V. Utkin, Spall Fracture (Springer, New York, 2003).

    Google Scholar 

  21. G. I. Kanel', Prikl. Mekh. Tekh. Fiz. 42(2), 358 (2001).

    Google Scholar 

  22. Compendium of Shock Wave Data, Ed. M. van Thiel (Lawrence Livermore National Laboratory Report No. UCRL-50108, Livermore, California, United States, 1977), p. 651.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Garkushin.

Additional information

Original Russian Text © S.V. Razorenov, G.V. Garkushin, G.I. Kanel', O.A. Kashin, I.V. Ratochka, 2011, published in Fizika Tverdogo Tela, 2011, Vol. 53, No. 4, pp. 768–773.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Razorenov, S.V., Garkushin, G.V., Kanel’, G.I. et al. Behavior of the nickel-titanium alloys with the shape memory effect under conditions of shock wave loading. Phys. Solid State 53, 824–829 (2011). https://doi.org/10.1134/S1063783411040305

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783411040305

Keywords

Navigation