Skip to main content
Log in

Ab initio calculations of supramolecular complexes of fullerene C60 with CdTe and CdS

  • Fullerenes
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

This paper presents the results of ab initio quantum-chemical calculations of supramolecular complexes C60CdHal, [C60]4CdHal, and [C60]6CdHal (Hal = S, Te), which simulate the defects forming in fullerite during the absorption or adsorption of cadmium telluride (sulfide). Calculations of the electronic structure of complexes with inclusion of their relaxation to the equilibrium state have been performed in terms of the density functional theory with the B3LYP hybrid functional. The obtained enthalpies of formation of complexes show that their formation leads to the energy gain of the order of 0.5–1.5 eV depending on the complex type. It has been shown that the formation of tetrahedral complexes [C60]4CdTe with the intercalated CdTe molecule is possible only with a considerable distortion of the tetrahedral void. The energy spectrum of low-lying excited electron states for the linear and octahedral complexes has been calculated. It has been found that a decrease in symmetry with the formation of complexes leads to the appearance of excited states of allowed singlet transitions in the electron spectrum, which are forbidden in optical spectra of initial components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. C. Langreth, B. I. Lundqvist, S. D. ChakarovaKäck, V. R. Cooper, M. Dion, P. Hyldgaard, A. Kelkkanen, J. Kleis, L. Kong, S. Li, P. G. Moses, E. Murray, A. Puzder, H. Rydberg, E. Schröder, and T. Thonhauser. J. Phys.: Condens. Matter 21, 084203 (2009)

    ADS  Google Scholar 

  2. E. Ziambaras, J. Kleis, E. Schröder, and P. Hyldgaar, Phys. Rev. B: Condens. Matter 76, 155425 (2007).

    Article  ADS  Google Scholar 

  3. P. V. Avramov, S. Sakai, S. Entani, Y. Matsumoto, and H. Naramoto, Chem. Phys. Lett. 508, 86 (2011).

    Article  ADS  Google Scholar 

  4. H. Zheng, K. Jiang, T. Abe, and Z. Ogumi, Carbon 44, 203 (2006).

    Article  Google Scholar 

  5. M. Makha, A. Purich, C. L. Raston, and A. N. Sobolev, Eur. J. Inorg. Chem. 2006, 507 (2006).

    Article  Google Scholar 

  6. M. J. Rosseinsky, J. Mater. Chem. 5, 1497 (1995).

    Article  Google Scholar 

  7. M. J. Rosseinsky, D. W. Murphy, R. M. Fleming, R. Tycko, A. P. Ramirez, G. Dabbagh, and S. E. Barrett, Nature (London) 356, 416 (1992).

    Article  ADS  Google Scholar 

  8. Yu. A. Ossipyan, N. S. Sidorov, A. V. Palnichenko, O. M. Vyaselev, M. V. Kartsovnik, M. Opel, V. V. Avdonin, D. V. Shakhrai, and V. E. Fortov, Nanotubes Carbon Nanostruct. 8, 376 (2010).

    Article  Google Scholar 

  9. D. Pontiroli, M. Aramini, M. Gaboardi, M. Mazzani, A. Gorreri, M. Ricco, I. Margiolaki, and D. Sheptyakov, Carbon 51, 143 (2012).

    Article  Google Scholar 

  10. K. A. Yee, K. R. Han, C. H. Kim, and C. H. Pyun, J. Phys. Chem. A 101, 5692 (1997).

    Article  Google Scholar 

  11. S. Kawasaki, T. Hara, and A. Iwata, Chem. Phys. Lett. 447, 316 (2007).

    Article  ADS  Google Scholar 

  12. Z. Slanina, F. Uhlik, S. L. Lee, and L. Adamowicz, J. Low Temp. Phys. 131, 1259 (2003).

    Article  ADS  Google Scholar 

  13. S. Sakai, S. Mitani, Y. Matsumoto, S. Entani, P. Avramov, M. Ohtomo, H. Naramoto, and K. Takanashi, J. Magn. Magn. Mater. 324, 1970 (2012).

    Article  ADS  Google Scholar 

  14. S. Sakai, S. Mitani, I. Sugai, K. Takanashi, Y. Matsumoto, S. Entani, H. Naramoto, P. Avramov, and Y. Maeda, Phys. Rev. B: Condens. Matter 83, 174422 (2011).

    Article  ADS  Google Scholar 

  15. B. Renker, G. Roth, H. Schober, P. Nagel, R. Lortz, C. Meingast, D. Ernst, M. T. Fernandez-Diaz, and M. Koza, Phys. Rev. B: Condens. Matter 64, 205417 (2001).

    Article  ADS  Google Scholar 

  16. R. E. Dinnebier, O. Gunnarsson, H. Brumm, E. Koch, P. W. Stephens, A. Huq, and M. Jansen, Science (Washington) 296, 109 (2002).

    Article  ADS  Google Scholar 

  17. C. Y. Yang and A. J. Heeger, Synth. Met. 83, 85 (1996).

    Article  Google Scholar 

  18. S. W. Tsang, H. Fu, R. Wang, J. Lu, K. Yu, and Y. Tao, J. Appl. Phys. Lett. 95, 183505 (2009).

    Article  ADS  Google Scholar 

  19. A. Takeda, T. Oku, A. Suzuki, K. Kikuchi, and S. Kikuchi, J. Ceram. Soc. Jpn. 117, 967 (2009).

    Article  Google Scholar 

  20. G. A. Il’chuk, V. V. Kusnezh, V. Yu. Rud’, Yu. V. Rud’, P. Yo. Shapowal, and R. Yu. Petrus’, Semiconductors 44(3), 318 (2010).

    Article  ADS  Google Scholar 

  21. V. Yu. Rud, Yu. V. Rud, V. F. Gremenok, E. I. Terukov, B. Kh. Bairamov, and Y. W. Song, Semiconductors 46(2), 221 (2012).

    Article  ADS  Google Scholar 

  22. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  23. A. D. Becke, Phys. Rev. A: At., Mol., Opt. Phys. 38, 3098 (1988).

    Article  ADS  Google Scholar 

  24. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B: Condens. Matter 37, 785 (1988).

    Article  ADS  Google Scholar 

  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Computer Code GAUSS-IAN 03, Revision B.05 (Gaussian, Pittsburgh, Pennsylvania, United States, 2003).

    Google Scholar 

  26. W. J. Stevens, H. Basch, and M. Krauss, J. Chem. Phys. 81, 6026 (1984).

    Article  ADS  Google Scholar 

  27. W. J. Stevens, M. Krauss, H. Basch, and P. G. Jasien, Can. J. Chem. 70, 612 (1992).

    Article  Google Scholar 

  28. I. B. Zakharova, V. M. Ziminov, N. M. Romanov, O. E. Kvyatkovskii, and T. L. Makarova, Phys. Solid State 56(5), 1064 (2014).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Kvyatkovskii.

Additional information

Original Russian Text © O.E. Kvyatkovskii, I.B. Zakharova, V.M. Ziminov, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 6, pp. 1240–1245.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kvyatkovskii, O.E., Zakharova, I.B. & Ziminov, V.M. Ab initio calculations of supramolecular complexes of fullerene C60 with CdTe and CdS. Phys. Solid State 56, 1289–1295 (2014). https://doi.org/10.1134/S1063783414060213

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414060213

Keywords

Navigation