Skip to main content
Log in

Thermal expansion of materials in the barium cerate-zirconate system

  • Semiconductors
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The thermal expansion of proton-conducting materials in the BaCe0.8 − x Zr x Y0.2O3 − δ system has been investigated in air. The influence of the zirconium concentration and the measurement mode (heating/cooling) on the form of dependences ΔL/L = f(T) has been established and values of the thermal expansion coefficient have been determined. The obtained results have been discussed from the viewpoint of the structure of materials and the influence of the partial water vapor pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ph. Colomban, Fuel Cells 13, 6 (2012).

    Article  Google Scholar 

  2. K. D. Kreuer, Annu. Rev. Mater. Res. 33, 333 (2003).

    Article  ADS  Google Scholar 

  3. L. Malavasi, C. A. J. Fisher, and M. S. Islam, Chem. Soc. Rev. 39, 4370 (2010).

    Article  Google Scholar 

  4. A. G. Kozlov and A. N. Udod, Perspekt. Mater., No. 1, 35 (2007).

    Google Scholar 

  5. K. D. Kreuer, S. J. Paddison, E. Spohr, and M. S. Islam, Chem. Rev. 104, 4637 (2004).

    Article  Google Scholar 

  6. D. Medvedev, A. Murashkina, E. Pikalova, A. Demin, A. Podias, and P. Tsiakaras, Prog. Mater. Sci. 72, 60 (2014).

    Google Scholar 

  7. E. Fabbri, L. Bi, D. Pergolesi, and E. Traversa, Adv. Mater. (Weinheim) 24, 195 (2012).

    Article  Google Scholar 

  8. M. Amsif, D. Marrero-Lopez, J. C. Ruiz-Morales, S. N. Savvin, and P. Nunez, J. Eur. Ceram. Soc. 36, 1553 (2014).

    Article  Google Scholar 

  9. S. Barison, M. Battagliarin, T. Cavallin, L. Doubova, M. Fabrizio, C. Mortalo, S. Boldrini, L. Malavasi, and R. Gerbasi, J. Mater. Chem. 18, 5120 (2008).

    Article  Google Scholar 

  10. Y. Guo, Y. Lin, R. Ran, and Z. Shao, J. Power Sources 193, 400 (2009).

    Article  Google Scholar 

  11. P. Sawant, S. Varma, B. N. Wani, and S. R. Bharadwaj, Int. J. Hydrogen Energy 37, 3848 (2012).

    Article  Google Scholar 

  12. S. Ricote, N. Bonanos, A. Manerbino, and W. G. Coors, Int. J. Hydrogen Energy 37, 7954 (2012).

    Article  Google Scholar 

  13. R. Kannan, S. Gill, N. Maffei, and V. Thangadurai, J. Electrochem. Soc. 160, F18 (2013).

    Article  Google Scholar 

  14. S. Yamanaka, M. Fujikane, T. Hamaguchi, H. Muta, T. Oyama, T. Matsuda, S.-I. Kobayashi, and K. Kurosaki, J. Alloys Compd. 359, 109 (2003).

    Article  Google Scholar 

  15. C. Hiraiwa, D. Han, A. Kuramitsu, A. Kuwabara, H. Takeuchi, M. Majima, and T. Uda, J. Am. Ceram. Soc. 96, 879 (2013).

    Article  Google Scholar 

  16. C.-S. Tu, R. R. Chien, V. H. Schmidt, S. C. Lee, and C.-C. Huang, J. Phys.: Condens. Matter. 24, 155403 (2012).

    ADS  Google Scholar 

  17. S. Yamaguchi and N. Yamada, Solid State Ionics 162–163, 23 (2003).

    Article  Google Scholar 

  18. A. V. Kuzmin, V. P. Gorelov, B. T. Melekh, M. Glerup, and F. W. Poulsen, Solid State Ionics 162–163, 13 (2003).

    Article  Google Scholar 

  19. D. Han, K. Shinoda, and T. Uda, J. Am. Ceram. Soc. 97, 643 (2014).

    Article  Google Scholar 

  20. V. P. Gorelov, V. B. Vykhodets, T. E. Kurennykh, V. B. Balakireva, A. V. Kuz’min, and M. V. Ananiev, Russ. J. Electrochem. 49, 915 (2013).

    Article  Google Scholar 

  21. V. P. Gorelov, V. B. Balakireva, A. V. Kuz’min, and S. V. Plaksin, Inorg. Mater. 50, 449 (2014).

    Article  Google Scholar 

  22. A. V. Kuz’min, V. P. Gorelov, E. G. Vaganov, I. V. Korzun, V. A. Kazantsev, T. I. Aksenova, and I. V. Khromushin, Russ. J. Electrochem. 41, 544 (2005).

    Article  Google Scholar 

  23. A. V. Kuz’min, V. P. Gorelov, N. V. Sharova, and V. B. Balakireva, Russ. J. Electrochem. 39, 454 (2003).

    Article  Google Scholar 

  24. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).

    Article  ADS  Google Scholar 

  25. L. Malavasi, C. Tealdi, C. Ritter, V. Pomjakushin, F. Gozzo, and Y. Diaz-Fernandez, Chem. Mater. 23, 1323 (2011).

    Article  Google Scholar 

  26. A. K. E. Andersson, S. M. Selbach, C. S. Knee, and T. Grande, J. Am. Ceram. Soc. 97, 2654 (2014).

    Article  Google Scholar 

  27. E. V. Tsipis and V. V. Kharton, J. Solid State Electrochem. 12, 1039 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Medvedev.

Additional information

Original Russian Text © Yu.G. Lyagaeva, D.A. Medvedev, A.K. Demin, P. Tsiakaras, O.G. Reznitskikh, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 2, pp. 272–276.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyagaeva, Y.G., Medvedev, D.A., Demin, A.K. et al. Thermal expansion of materials in the barium cerate-zirconate system. Phys. Solid State 57, 285–289 (2015). https://doi.org/10.1134/S1063783415020250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415020250

Keywords

Navigation