Skip to main content
Log in

Temperature dependence of Young’s modulus of titanium dioxide (TIO2) nanotubes: Molecular mechanics modeling

  • Mechanical Properties, Physics of Strength, and Plasticity
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Temperature dependence of the Young’s modulus of cylindrical single-wall nanotubes with zigzag and armchair chiralities and consolidated-wall nanotubes has been studied by the molecular mechanics method with the use of the atom–atom potential. The nanotubes have been obtained by rolling up of crystal layers (111) of TiO2 with fluorite structure. Calculations have been performed for isothermal conditions on the basis of calculating the Helmholtz free energy of the system. The dependence of the Helmholtz free energy of nanotubes on the period has been calculated in the quasi-harmonic approximation as a result of calculation of phonon frequencies. It has been shown that the temperature dependence of the stiffness of nanotubes is determined by their chirality, and some nanotubes exibit anomalous behavior of both the Young’s modulus and the period of unit cell with variation in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. T. Byrne, J. E. McCarthy, M. Bent, R. Blake, Y. K. Gun’ko, E. Horvath, Z. Konya, A. Kukovecz, I. Kiricsi, and J. N. Coleman, J. Mater. Chem. 17, 2351 (2007).

    Article  Google Scholar 

  2. P. J. F. Harris, Int. Mater. Rev. 49, 31 (2004).

    Article  ADS  Google Scholar 

  3. R. Tenne, Front. Phys. 9, 370 (2014).

    Article  Google Scholar 

  4. S. Kaur, M. Gallei, and E. Ionescu, in Organic–Inorganic Hybrid Nanomaterials, Ed. by S. Kalia and Y. Haldorai (Springer-Verlag, Cham, Switzerland, 2015).

  5. A. W. Tan, B. Pingguan-Murphy, R. Ahmad, and S. A. Akbar, Ceram. Int. 38, 4421 (2012).

    Article  Google Scholar 

  6. L. S. Santos, N. T. C. Oliveira, C. M. Lepienski, C. E. B. Marino, and N. K Kuromoto, Rev. Mater. 19, 33 (2014).

    Google Scholar 

  7. A. W. Miles and S. Gheduzzi, Surgery 30, 86 (2012).

    Google Scholar 

  8. T. Shokuhfar, G. K. Arumugam, P. A. Heiden, R. S. Yassar, and C. Friedrich, ACS Nano 3, 3098 (2009).

    Article  Google Scholar 

  9. G. A. Crawford, N. Chawla, K. Das, S. Bose, and A. Bandyopadhyay, Acta Biomater. 3, 359 (2007).

    Article  Google Scholar 

  10. G. A. Crawford, N. Chawla, and J. E. Houston, J. Mech. Behav. Biomed. Mater. 2, 580 (2009).

    Article  Google Scholar 

  11. K. Fischer and S. G. Mayr, Adv. Mater. (Weinheim) 23, 3838 (2011).

    Google Scholar 

  12. I. Kaplan-Ashiri, S. R. Cohen, K. Gartsman, R. Rosentsveig, G. Seifert, and R. Tenne, J. Mater. Res. 19, 454 (2004).

    Article  ADS  Google Scholar 

  13. A. V. Bandura, R. A. Evarestov, and S. I. Lukyanov, Phys. Chem. Chem. Phys. 16, 14781 (2014).

    Article  Google Scholar 

  14. J. P. Lu, Phys. Rev. Lett. 79, 1297 (1997).

    Article  ADS  Google Scholar 

  15. J. P. Lu, Phys. Chem. Solids 58, 1649 (1997).

    Article  ADS  Google Scholar 

  16. Y. Jin and F. G. Yuan, Compos. Sci. Technol. 63, 1507 (2003).

    Article  Google Scholar 

  17. P. M. Agrawal, B. S. Sudalayandi, L. M. Raff, and R. Komanduri, Comput. Mater. Sci. 38, 271 (2006).

    Article  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 7: Theory of Elasticity (Nauka, Moscow, 1987; Butterworth–Heinemann, Oxford, 1995).

    Google Scholar 

  19. T. Lorenz, D. Teich, J.-O. Joswig, and G. Seifert, J. Phys. Chem. C 116, 11714 (2012).

    Article  Google Scholar 

  20. M. Griebel, J. Hamaekers, and F. Heber, Comput. Mater. Sci. 45, 1097 (2009).

    Article  Google Scholar 

  21. E. W. Bucholz and S. B. Sinnott, J. Appl. Phys. 112, 123510 (2012).

    Article  ADS  Google Scholar 

  22. Y. Jin and F. G. Yuan, Compos. Sci. Technol. 63, 1507 (2003).

    Article  Google Scholar 

  23. G. Dereli and C. Ozdogan, Phys. Rev. B: Condens. Matter 67, 35416 (2003).

    Article  ADS  Google Scholar 

  24. G. Gao, T. Cagin, and W. A. Goddard III, Nanotechnology 9, 184 (1998).

    Article  ADS  Google Scholar 

  25. A. Sears and R. C. Batra, Phys. Rev. B: Condens. Matter 69, 235 406 (2004).

    Google Scholar 

  26. Y. J. Guo, PhD Dissertation (California Institute of Technology, Pasadena, California, United States, 1992).

    Google Scholar 

  27. I. Kaplan-Ashiri, S. R. Cohen, K. Gartsman, R. Rosentsveig, G. Seifert, and R. Tenne, J. Mater. Res. 19, 454 (2004).

    Article  ADS  Google Scholar 

  28. I. Kaplan-Ashiri, S. R. Cohen, K. Gartsman, V. Ivanovskaya, T. Heine, G. Seifert, I. Wiesel, H. D. Wagner, and R. Tenne, Proc. Natl. Acad. Sci. 103, 523 (2006).

    Article  ADS  Google Scholar 

  29. R. P. Stoffel, C. Wessel, M.-W. Lumey, and R. Dronskowski, Angew. Chem., Int. Ed. Engl. 49, 5242 (2010).

    Article  Google Scholar 

  30. K. Lagarec and S. Desgreniers, Solid State Commun. 94, 519 (1995).

    Article  ADS  Google Scholar 

  31. J. Wang, L. Wang, L. Maa, J. Zhao, B. Wang, and G. Wang, Physica E (Amsterdam) 41, 838 (2009).

    Article  ADS  Google Scholar 

  32. R. A. Evarestov, A. V. Bandura, M. V. Losev, S. Piskunov, and Yu. F. Zhukovskii, Physica E (Amsterdam) 43, 266 (2010).

    Article  ADS  Google Scholar 

  33. R. A. Evarestov, Yu. F. Zhukovskii, A. V. Bandura, and S. Piskunov, J. Phys. Chem. C 114, 21061 (2010).

    Article  Google Scholar 

  34. J. D. Gale, Z. Kristallogr. 220, 552 (2005).

    Google Scholar 

  35. A. A. Maradudin, E. W. Montroll, G. H. Weiss, and I. P. Ipatova, Theory of Lattice Dynamics in the Harmonic Approximation (Academic, New York, 1971).

    Google Scholar 

  36. A. Hallil, R. Tétot, F. Berthier, I. Braems, and J. Creuze, Phys. Rev. B: Condens. Matter 73, 165406 (2006).

    Article  ADS  Google Scholar 

  37. C. M. Freeman, J. M. Newsam, S. M. Levinea, and C. R. A. Catlow, J. Mater. Chem. 3, 531 (1993).

    Article  Google Scholar 

  38. M. O. Zacate, R. W. Grimes, and K. Scrivener, J. Mater. Sci. 35, 3727 (2000).

    Article  ADS  Google Scholar 

  39. M. Mostoller and J. C. Wang, Phys. Rev. B: Condens. Matter 32, 6773 (1985).

    Article  ADS  Google Scholar 

  40. M. Matsui and M. Akaogi, Mol. Simul. 6, 239 (1991).

    Article  Google Scholar 

  41. D.-W. Kim, N. Enomoto, Z. Nakagawa, and K. Kawamura, J. Am. Ceram. Soc. 79, 1095 (1996).

    Article  Google Scholar 

  42. V. Swamy and J. D. Gale, Phys. Rev. B: Condens. Matter 62, 5406 (2000).

    Article  ADS  Google Scholar 

  43. X. J. Han, L. Bergqvist, P. H. Dederichs, H. Müller- Krumbhaar, J. K. Christie, S. Scandolo, and P. Tangney, Phys. Rev. B: Condens. Matter 81, 134108 (2010).

    Article  ADS  Google Scholar 

  44. S. M. Woodley, P. D. Battle, J. D. Gale, and C. R. A. Catlow, Phys. Chem. Chem. Phys. 1, 2535 (1999).

    Article  Google Scholar 

  45. T. Liang, Y. K. Shin, Y.-T. Cheng, D. E. Yilmaz, K. G. Vishnu, O. Verners, C. Zou, S. R. Phillpot, S. B. Sinnott, and A. C. T. van Duin, Annu. Rev. Mater. Res. 43, 109 (2013).

    Article  ADS  Google Scholar 

  46. R. D. Shannon, Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).

    Article  ADS  Google Scholar 

  47. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987).

    MATH  Google Scholar 

  48. M. Horn, C. F. Schwerdtfeger, and E. P. Z. Meagher, Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 136, 273 (1972).

    Article  ADS  Google Scholar 

  49. K. V. Krishna Rao, S. V. Nagender Naidu, and L. Iyengar, J. Am. Ceram. Soc. 53, 124 (1970).

    Article  Google Scholar 

  50. J. K. Burdett, T. Hughbanks, G. J. Miller, J. W. Richardson, and J. V. Smith, J. Am. Chem. Soc. 109, 363 (1987).

    Article  Google Scholar 

  51. J. B. Wachtman, W. E. Tefft, and D. G. Lam, J. Res. Natl. Stand., Sec. A. 66, 465 (1962).

    Article  Google Scholar 

  52. S. P. Albu, A. Ghicov, S. Aldabergenova, P. Drechsel, D. LeClere, G. E. Thompson, J. M. Macak, and P. Schmuki, Adv. Mater. (Weinheim) 20, 4135 (2008).

    Google Scholar 

  53. N. Liu, H. Mirabolghasemi, K. Lee, S. P. Albu, A. Tighineanu, M. Altomareab, and P. Schmuki, Faraday Discuss. 164, 107 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. I. Lukyanov.

Additional information

Original Russian Text © S.I. Lukyanov, A.V. Bandura, R.A. Evarestov, 2015, published in Fizika Tverdogo Tela, 2015, Vol. 57, No. 12, pp. 2391–2399.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lukyanov, S.I., Bandura, A.V. & Evarestov, R.A. Temperature dependence of Young’s modulus of titanium dioxide (TIO2) nanotubes: Molecular mechanics modeling. Phys. Solid State 57, 2464–2472 (2015). https://doi.org/10.1134/S1063783415120239

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783415120239

Keywords

Navigation