Skip to main content
Log in

Exchange and Exchange-Relativistic Effects in the Excited States of 3d Ions in Crystals

  • OPTICAL PROPERTIES
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The use of the simplest Heisenberg or Dzyaloshinskii–Moriya-type spin Hamiltonians traditional for the ground orbital nondegenerate states does not allow the features of the exchange and exchange-relativistic couplings for the excited states of 3d and 4f ions in crystals to be correctly described. We have considered a generalized Hamiltonian of the exchange and superexchange couplings, which makes it possible to take into account the effects of orbital (quasi)degeneracy and the exchange mechanism of excitation transfer using a single approach. A new mechanism of the spin–other orbit exchange-relativistic couplings is discussed, in particular, the spin–orbital analog of the Dzyaloshinskii–Moriya interaction and its manifestation in the circular magnetooptics of weak ferromagnets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. V. Druzhinin and A. S. Moskvin, Fiz. Met. Metalloved. 26, 415 (1968).

    Google Scholar 

  2. P. M. Levy, Phys. Rev. 177, 509 (1969);

    Article  ADS  Google Scholar 

  3. G. M. Copland and P. M. Levy, Phys. Rev. B 1, 3043 (1970).

    Article  ADS  Google Scholar 

  4. I. Veltrusky, Czech. J. Phys. 25, 101 (1975).

    Article  ADS  Google Scholar 

  5. A. S. Moskvin, Doctoral (Phys. Math.) Dissertation (Ural. Gos. Univ., Sverdlovsk, 1983). http://www.dissercat.com/content/antisimmetrichnyi-obmen-imagnitnaya-anizotropiya-v-slabykh-ferromagnetikakh.

    Google Scholar 

  6. A. S. Moskvin, Atoms in Crystals (Ural. Univ., Ekaterinburg, 2018) [in Russian]. http://elar.urfu.ru/handle/10995/65226.

  7. A. S. Moskvin and V. V. Druzhinin, Opt. Spectrosc. 29, 899 (1970).

    Google Scholar 

  8. A. S. Moskvin and S.-L. Drechsler, Phys. Rev. B 78, 024102 (2008);

    Article  ADS  Google Scholar 

  9. Europhys. Lett. 81, 57004 (2008).

  10. A. S. Moskvin, Sov. Phys. Solid State 12, 2593 (1970).

    Google Scholar 

  11. A. A. Sidorov, A. S. Moskvin, and V. V. Popkov, Sov. Phys. Solid State 18, 1751 (1976).

    Google Scholar 

  12. K. I. Kugel’ and D. I. Khomskii, Sov. Phys. Usp. 25, 231 (1982).

  13. A. S. Moskvin and A. S. Luk’yanov, Sov. Phys. Solid State 19, 1156 (1977).

    Google Scholar 

  14. J. Fergusson, H. J. Guggenheim, and Y. Tanabe, J. Phys. Soc. Jpn. 21, 692 (1966).

    Article  ADS  Google Scholar 

  15. A. S. Moskvin, J. Malek, M. Knupfer, R. Neudert, J. Fink, R. Hayn, S.-L. Drechsler, N. Motoyama, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 91, 037001 (2003).

    Article  ADS  Google Scholar 

  16. A. S. Moskvin and R. V. Pisarev, J. Low Temp. Phys. 36, 489 (2010).

    Article  Google Scholar 

  17. A. S. Moskvin, A. A. Makhnev, L. V. Nomerovannaya, N. N. Loshkareva, and A. M. Balbashov, Phys. Rev. B 82, 035106 (2010).

    Article  ADS  Google Scholar 

  18. V. I. Sokolov, V. A. Pustovarov, V. N. Churmanov, V. Yu. Ivanov, N. B. Gruzdev, P. S. Sokolov, A. N. Baranov, and A. S. Moskvin, Phys. Rev. B 86, 115128 (2012).

    Article  ADS  Google Scholar 

  19. A. S. Moskvin, Phys. Rev. B 84, 075116 (2011).

    Article  ADS  Google Scholar 

  20. I. E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259 (1957);

    Google Scholar 

  21. I. Dzyaloshinsky, J. Phys. Chem. Solids 4, 241 (1958).

    Article  ADS  Google Scholar 

  22. T. Moriya, Phys. Rev. Lett. 4, 228 (1960);

    Article  ADS  Google Scholar 

  23. Phys. Rev. 120, 91 (1960).

  24. F. Keffer, Phys. Rev. 126, 896 (1962).

    Article  ADS  Google Scholar 

  25. A. S. Moskvin and I. G. Bostrem, Sov. Phys. Solid State 19, 946 (1977).

    Google Scholar 

  26. A. S. Moskvin, Sov. Phys. Solid State 32, 959 (1990).

    Google Scholar 

  27. A. S. Moskvin, J. Exp. Theor. Phys. 104, 913 (2007).

    Article  ADS  Google Scholar 

  28. A. S. Moskvin, Phys. Rev. B 75, 054505 (2007).

    Article  ADS  Google Scholar 

  29. A. S. Moskvin, J. Magn. Magn. Mater. 400, 117 (2016);

    Article  ADS  Google Scholar 

  30. J. Magn. Magn. Mater. 463, 50 (2018).

  31. E. A. Gan’shina, A. V. Zenkov, G. S. Krinchik, A. S. Moskvin, and A. Yu. Trifonov, Sov. Phys. Solid State 33, 637 (1991).

    Google Scholar 

  32. A. V. Zenkov, B. B. Krichevtsov, A. S. Moskvin, K. M. Mukimov, R. V. Pisarev, and M. M. Ruvinshtein, Sov. Phys. JETP 69, 792 (1989).

    Google Scholar 

Download references

FUNDING

This study was supported by the Government of the Russian Federation, Program 211, agreement no. 02.A03.21.0006 and the Ministry of Education and Science of the Russian Federation, projects nos. 2277 and 5719.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Moskvin.

Additional information

Translated by E. Bondareva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moskvin, A.S. Exchange and Exchange-Relativistic Effects in the Excited States of 3d Ions in Crystals. Phys. Solid State 61, 887–893 (2019). https://doi.org/10.1134/S1063783419050184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783419050184

Navigation