Skip to main content
Log in

The Morphology and Mechanical Properties of PrDyFeCoB Microwires

  • METALS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The PrDyFeCoB microwires, whose diameter and cylindricity are controlled via rotation speed of a cooling cylinder and depend on time of droplet solidification on it, are obtained via extraction of a hanging melt droplet. The variations in cooling mode of a melt droplet lead to a change in cross-sectional shape from completely cylindrical to semicircle, crescent, and almost flat plate one. We found that the cooling mode affects not only the morphology, but also the mechanical properties, which are different for microwires of d-ifferent shapes, and changes the microhardness and Young’s modulus of different surfaces of the same microwire.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. R. Morgunov and O. Koplak, Mater. Lett. 273, 127954 (2020).

    Article  Google Scholar 

  2. R. Sarkar and V. V. Rybenkov, Front. Phys. 4, 48 (2016).

    Article  Google Scholar 

  3. P. Kollmannsberger and B. Fabry, Rev. Sci. Instrum. 78, 114301 (2007).

    Article  ADS  Google Scholar 

  4. V. Zhukova, M. Ipatov, J. Gonzalez, J. M. Blanco, and A. Zhukov, J. Appl. Phys. 103, 07E714 (2008).

  5. V. Zhukova, M. Ipatov, and A. Zhukov, Sensors 9, 9216 (2009).

    Article  Google Scholar 

  6. K. Mandal, S. Puerta, M. Vázquez, and A. Hernando, Phys. Rev. B 62, 6598 (2000).

    Article  ADS  Google Scholar 

  7. H.-X. Peng, F. Qin, and M.-H. Phan, Ferromagnetic Microwire Composites: From Sensors to Microwave Applications, Ser. Eng. Mater. Proc. (Springer, 2016).

  8. R. Szary, I. Luciu, D. Duday, E. A. Perigo, T. Wirtz, P. Choquet, and A. Michels, J. Appl. Phys. 117, 17D134 (2015).

  9. Z. Wusheng, L. Jinyun, S. Tianxiu, and W. Zhengyun, J. Rare Earths 29, 9410 (2011).

    Google Scholar 

  10. R. B. Morgunov, O. V. Koplak, V. P. Piskorskii, D. V. Korolev, R. A. Valeev, and A. D. Talantsev, J. Magn. Magn. Mater. 497, 166004 (2020).

    Article  Google Scholar 

  11. O. V. Koplak, V. L. Sidorov, E. I. Kunitsyna, R. A. Va-leev, D. V. Korolev, V. P. Piskorskii, and R. B. Morgunov, Phys. Solid State 61, 2061 (2019).

    Article  ADS  Google Scholar 

  12. O. V. Koplak, E. V. Dvoretskaya, A. D. Talantsev, D. V. Korolev, R. A. Valeev, V. P. Piskorskii, A. S. Denisova, and R. B. Morgunov, Phys. Solid State 62, 648 (2020).

    Article  ADS  Google Scholar 

  13. V. P. Piskorskii, R. A. Valeev, D. V. Korolev, R. B. Morgunov, and I. I. Rezchikova, Tr. VIAM 7 (79), 59 (2019).

    Article  Google Scholar 

  14. R. B. Morgunov, O. V. Koplak, A. D. Talantsev, D. V. Korolev, V. P. Piskorskii, and R. A. Valeev, Tr. VIAM 7 (79), 67 (2019).

    Article  Google Scholar 

  15. O. V. Koplak, E. V. Dvoretskaya, D. V. Korolev, R. A. Valeev, V. P. Piskorskii, A. S. Denisova, and R. B. Morgunov, Phys. Solid State 62, 1333 (2020).

    Article  Google Scholar 

  16. A. Zhukova, V. Zhukov, J. M. Blancoc, A. F. Cobeno, M. Vazquez, and J. Gonzalez, J. Magn. Magn. Mater. 258, 151 (2003).

    Article  ADS  Google Scholar 

  17. S. A. Baranov, D. Laroze, P. Vargas, and M. Vazquez, Phys. B: Condens. Matter 372, 324 (2006).

    Article  ADS  Google Scholar 

  18. Y. Takemura, H. Tokuda, K. Komatsu, S. Masuda, T. Yamada, K. Kakuno, and K. Saito, IEEE Trans. Magn. 32, 4947 (1996).

    Article  ADS  Google Scholar 

  19. L. Galdun, T. Ryba, V. M. Prid, V. Zhukova, A. Zhukov, P. Diko, V. Kavecansky, Z. Vargova, and R. Varga, J. Magn. Magn. Mater. 453, 96 (2018).

    Article  ADS  Google Scholar 

  20. M. Vazquez, K. L. Garcia, A. Zhukov, R. Varga, and P. Vojtanik, J. Optoelectron. Adv. Mater. 6, 581 (2004).

    Google Scholar 

  21. A. Goryu, A. Ikedo, M. Ishida, and T. Kawano, Nanotechnology 21, 125302 (2010).

    Article  ADS  Google Scholar 

  22. I. I. Maslenikov, V. N. Reshetov, and A. S. Useinov, Instrum. Exp. Tech. 58, 711 (2015).

    Article  Google Scholar 

  23. L. H. Tanner, J. Phys. D 12, 1473 (1979).

    Article  ADS  Google Scholar 

  24. A. Eddi, K. G. Winkels, and J. H. Snoeijer, Phys Fluids 25, 013102 (2013).

    Article  ADS  Google Scholar 

  25. S. Rafai, D. Sarker, V. Bergeron, J. Meunier, and D. Bonn, Langmuir 18, 10486 (2002).

    Article  Google Scholar 

  26. T. Iida, R. Guthrie, M. Isac, and N. Tripathi, Met. Mater. Trans. B 37, 403 (2006).

    Article  Google Scholar 

  27. W. C. Oliver and G. M. Pharr, J. Mater. Res. 19, 3 (2004).

    Article  ADS  Google Scholar 

  28. A. Leyland and A. Matthews, Wear 246, 1 (2000).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to N. N. Dremova for obtaining SEM images.

Funding

This work was financially supported by the Russian Foundation for Basic Research (grant “Stability,” no. 20-32-70025), the grant of the President of Russian Federation for the state support of leading scientific schools (no. 2644.2020.2), and the program of the Institute of Problems of Chemical Physics, Russian Academy of Sciences (no. AAAA-A19-119092390079-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Koplak.

Ethics declarations

The authors have no conflicts of interest to declare.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koplak, O.V., Dvoretskaya, E.V., Kravchuk, K.S. et al. The Morphology and Mechanical Properties of PrDyFeCoB Microwires. Phys. Solid State 62, 2272–2279 (2020). https://doi.org/10.1134/S1063783420120161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420120161

Keywords:

Navigation