Skip to main content
Log in

Comparison of the Wavelet and Gabor Transforms in the Spectral Analysis of Nonstationary Signals

  • THEORETICAL AND MATHEMATICAL PHYSICS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Two approaches to the analysis of nonstationary random processes (short-time Fourier transform and continuous wavelet transform) are compared. The comparison is based on the study of several model signals with known time–frequency characteristics. The application of the approaches is also analyzed in the study of spectral dynamics of fluorescence of cold atomic clouds excited by pulsed radiation. It is shown that the two approaches make it possible to reveal the main specific features of the signals under study. However, the continuous wavelet transform has several advantages, since the optimal conditions for the analysis using the short-time Fourier transform are reached if additional calculations aimed at determination of the optimal width of the window are performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  2. S. Mallat, A Wavelet Tour of Signal Processing, 3rd ed. (Academic, New York, 2008).

    MATH  Google Scholar 

  3. V. P. Dvorkovich and A. V. Dvorkovich, Metrological Assurance for Video Information Systems (Tekhnosfera, 2015).

    Google Scholar 

  4. C. K. Chui, An Introduction to Wavelets (Academic, New York, 1992).

    MATH  Google Scholar 

  5. N. K. Smolentsev, An Introduction to Wavelet Theory. Wavelets in Mathlab (DMK Press, Moscow, 2008).

    Google Scholar 

  6. R. K. R. Yarlagadda, Analog and Digital Signals and Systems (Springer, 2010).

    Book  MATH  Google Scholar 

  7. C. K. Chui and Q. Jiang, Applied Mathematics. Data Compression. Spectral Methods, Fourier Analysis, Wavelets and Applications (Atlantis, 2013).

  8. D. A. Andreev, S. V. Bozhokin, I. D. Venevtsev, and K. T. Zhunusov, Tech. Phys. 59, 1428 (2014).

    Article  Google Scholar 

  9. A. E. Hramov, A. A. Koronovskii, V. A. Makarov, A. N. Pavlov, and E. Sitnikova, Wavelets in Neuroscience (Springer, 2015).

    Book  MATH  Google Scholar 

  10. P. S. Addison, The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance, 2nd ed. (CRC Press, 2017).

    MATH  Google Scholar 

  11. C. Blatter, Wavelets—Eine Einführung (Vieweg & Sohn, 1998).

  12. V. P. D’yakonov, Wavelets from Theory to Practice (Solon-R, Moscow, 2002).

    Google Scholar 

  13. S. V. Bozhokin, Tech. Phys. 57, 900 (2012).

    Article  Google Scholar 

  14. S. V. Bozhokin, S. V. Zharko, N. V. Larionov, A. N. Lit-vinov, and I. M. Sokolov, Tech. Phys. 62, 837 (2017).

    Article  Google Scholar 

  15. M. K. Kiymik, I. Güler, A. Dizibüyük, and M. Akin, Comput. Biol. Med. 35, 603 (2005).

    Article  Google Scholar 

  16. M. Akin, J. Med. Syst. 26, 241 (2002).

    Article  Google Scholar 

  17. E. Sitnikova, A. E. Hramov, A. A. Koronovsky, and G. Luijtelaar, J. Neurosci. Methods 180, 304 (2009).

    Article  Google Scholar 

  18. E. D. Ryan, J. T. Cramer, A. D. Egan, M. J. Hartman, and T. J. Herda, J. Electromyogr. Kinesiol. 18, 54 (2008).

    Article  Google Scholar 

  19. M. R. Canal, J. Med. Syst. 34, 91 (2010).

    Article  Google Scholar 

  20. L. Coppola, Q. Liu, S. Buso, D. Boroyevich, and A. Bell, IEEE Trans. Ind. Electron. 55, 880 (2008).

    Article  Google Scholar 

  21. S. H. Cho, G. Jang, and S. H. Kwon, IEEE Trans. Power Delivery 25, 494 (2010).

    Article  Google Scholar 

  22. S. Dass, M. S. Holi, and K. S. Rajan, Int. J. Eng. Res. Technol. 2, 636 (2013).

    Article  Google Scholar 

  23. E. D. Ubeyli and I. Guler, Comput. Biol. Med. 34, 345 (2004).

    Article  Google Scholar 

  24. L. Cnockaert, P. F. Migeotte, L. Daubigny, G. K. Prisk, F. Grenez, and R. C. Sa, IEEE Trans. Biomed. Eng. 55, 1640 (2008).

    Article  Google Scholar 

  25. T. M. E. Nijsen, R. M. Aarts, P. J. M. Cluitmans, and P. A. M. Griep, IEEE Trans. Inf. Technol. Biomed. 14, 1197 (2010).

    Article  Google Scholar 

  26. E. Shokrollahi, G. Zargar, and M. A. Riahi, Int. J. Sci. Emerging Technol. 5, 291 (2013).

    Google Scholar 

  27. Yi Hu and P. C. Loisou, IEEE Trans. Audio, Speech Lang. Process. 16, 229 (2008).

    Article  Google Scholar 

  28. J. Benesty, J. Chen, and Y. Huang, IEEE Trans. Audio, Speech Lang. Process. 16, 757 (2008).

    Article  Google Scholar 

  29. F. Jaskolski, C. Mulle, and O. Manzoni, J. Neurosci. Methods 146, 42 (2005).

    Article  Google Scholar 

  30. G. Labeyrie, E. Vaujour, C. A. Muller, D. Delande, C. Miniatura, D. Wilkowski, and R. Kaiser, Phys. Rev. Lett. 91, 223904 (2003).

    Article  ADS  Google Scholar 

  31. S. Balik, R. G. Olave, C. I. Sukenik, M. D. Havey, V. M. Datsyuk, I. M. Sokolov, and D. V. Kupriyanov, Phys. Rev. A 72, 051402 (2005).

    Article  ADS  Google Scholar 

  32. S. Balik, M. D. Havey, I. M. Sokolov, and D. V. Kupriyanov, Phys. Rev. A 79, 033418 (2009).

    Article  ADS  Google Scholar 

  33. S. Balik, A. L. Win, M. D. Havey, I. M. Sokolov, and D. V. Kupriyanov, Phys. Rev. A 87, 053817 (2013).

    Article  ADS  Google Scholar 

  34. J. Pellegrino, R. Bourgain, S. Jennewein, Y. R. P. Sortais, A. Browaeys, S. D. Jenkins, and J. Ruostekoski, Phys. Rev. Lett. 113, 133602 (2014).

    Article  ADS  Google Scholar 

  35. M. O. Araujo, I. Kresic, R. Kaiser, and W. Guerin, Phys. Rev. Lett. 117, 073002 (2016).

    Article  ADS  Google Scholar 

  36. S. J. Roof, K. J. Kemp, M. D. Havey, and I. M. Sokolov, Phys. Rev. Lett. 117, 073003 (2016).

    Article  ADS  Google Scholar 

  37. W. Guerin, M. O. Araujo, and R. Kaiser, Phys. Rev. Lett. 116, 083601 (2016).

    Article  ADS  Google Scholar 

  38. I. M. Sokolov, J. Exp. Theor. Phys. 125, 384 (2017).

    Article  ADS  Google Scholar 

  39. S. V. Bozhokin and I. M. Sokolov, Opt. Spectrosc. 123, 858 (2017).

    Article  ADS  Google Scholar 

  40. Ya. A. Fofanov, A. S. Kuraptsev, I. M. Sokolov, and M. D. Havey, Phys. Rev. A 87, 063839 (2013).

    Article  ADS  Google Scholar 

  41. I. M. Sokolov, A. S. Kuraptsev, D. V. Kupriyanov, M. D. Havey, and S. Balik, J. Mod. Opt. 60, 50 (2013).

    Article  ADS  Google Scholar 

  42. V. V. Grubov, E. Sitnikova, A. N. Pavlov, A. A. Koronovskii, and A. E. Hramov, Phys. A 486, 206 (2017).

    Article  Google Scholar 

  43. U. V. Borodina and R. R. Aliev, Neurocomputing 121, 551 (2013).

    Article  Google Scholar 

  44. A. Bijaoui, in Wavelets in Physics, Ed. by J. C. van den Berg (Cambridge Univ. Press, 1999), p. 77.

    Google Scholar 

  45. J. W. Baker, Bull. Seismol. Soc. Am. 97, 1486 (2007).

    Article  Google Scholar 

  46. Y. Deng, Z. Wu, L. Chai, C. Wang, K. Yamane, R. Morita, M. Yamashita, and Z. Zhan, Opt. Express 13, 2120 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Bozhokin.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bozhokin, S.V., Sokolov, I.M. Comparison of the Wavelet and Gabor Transforms in the Spectral Analysis of Nonstationary Signals. Tech. Phys. 63, 1711–1717 (2018). https://doi.org/10.1134/S1063784218120241

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784218120241

Navigation