Skip to main content
Log in

Stress Corrosion Cracking of Metals and Alloys in Aggressive H2S–CO2–Cl Environments

  • PHYSICAL MATERIALS SCIENCE
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We have analyzed the data on stress corrosion cracking of steels of various grades in acidic H2S–CO2–Cl solutions. For the active region of corrosion, we have obtained the dependence of the lifetime and the steady-state corrosion rate on external (concentration of solution components, temperature, and tensile stress) and internal parameters of corrosion (Cr, Ni, and Mo doping level and conditional yield stress for steel). The resultant dependences will make it possible to estimate the corrosion behavior and the possibility of using steel in an aggressive environment without resorting to durable and costly natural tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Corrosion, Ed. by L. L. Shraer and V. S. Sinyavskii (Metallurgiya, Moscow, 1981).

    Google Scholar 

  2. I. M. Robertson, P. Sofronis, A. Nagao, M. L. Martin, S. Wang, D. W. Gross, and K. E. Nygrenet, Metall. Mater. Trans 46, 1085 (2015).

    Article  Google Scholar 

  3. A. J. Sedriks, Corosion of Stainless Steel (Wiley, Hoboken, 1996).

    Google Scholar 

  4. V. Vignal, S. Ringeval, and S. Thiebaut, Corros. Sci. 85, 42 (2014).

    Article  Google Scholar 

  5. F. Shi, L. Zhang, J. Yang, et al., Corros. Sci. 102, 103 (2016).

    Article  Google Scholar 

  6. X. Wen, P. Bai, B. Luo, S. Zeng, and C. Chen, Corros. Sci. 139, 124 (2018).

    Article  ADS  Google Scholar 

  7. M. Henthorne, Corrosion 72, 1488 (2016).

    Article  Google Scholar 

  8. H. Margot-Marette, G. Bardou, and J. C. Charbonnier, Corros. Sci. 27, 1009 (1987).

    Article  Google Scholar 

  9. V. V. Skorchelletti, Theoretical Foundations of Metal Corrosion (Khimiya, Leningrad, 1973).

    Google Scholar 

  10. E. M. Gutman, Mechanochemistry of Metals and Corrosion Protection (Metallurgiya, Moscow, 1981).

    Google Scholar 

  11. A. V. Ryabchikov and V. P. Sidorov, Zashch. Met. 75, 376 (1969).

    Google Scholar 

  12. F. Mancia, Corros. Sci. 27, 1225 (1987).

    Article  Google Scholar 

  13. H. Kurahashi, T. Kurisu, Y. Sone, K. Wada, and Y. Nakai, Corrosion 41, 211 (1985).

    Article  Google Scholar 

  14. R. Nishimura, Corrosion 48, 882 (1992).

    Article  Google Scholar 

  15. D. Murali, Corrosion 41, 406 (1985).

    Article  Google Scholar 

  16. A. Ikeda, S. Mukai, and M. Veda, Corrosion 41, 185 (1985).

    Article  Google Scholar 

  17. H. H. Uhlig, Mater. Perform. 16, 22 (1977).

    Google Scholar 

  18. J. L. Crolet and M. R. Bonic, Corrosion 39, 39 (1983).

    Article  Google Scholar 

  19. A. I. Petrov and M. V. Razuvaeva, Tech. Phys. 55, 844 (2010).

    Article  Google Scholar 

  20. W. Zhao, Y. Zou, K. J. Matsuda, and Z. Zou, Corros. Sci. 102, 455 (2016).

    Article  Google Scholar 

  21. A. Anderko, F. Gui, L. Cao, N. Sridhar, and G. R. Engelhardtet, Corrosion 71, 1197 (2015).

    Article  Google Scholar 

  22. X. Lei, Y. Feng, J. Zhang, A. Fu, C. Yin, and D. D. Macdonald, Electrochem. Acta 191, 640 (2016).

    Article  Google Scholar 

  23. R. N. Parkins, in Corrosion, Ed. by L. L. Shreiz (Newnes-Butterworth, London, 1976). https://doi.org/10.1016/C2013-0-04015-7

  24. G. T. Burstein and P. I. Marshall, Corros. Sci. 23, 125 (1983).

    Article  Google Scholar 

  25. H. S. Kwon, E. A. Cho, and K. A. Yeon, Corrosion 56, 32 (2000).

    Article  Google Scholar 

  26. C.-J. Park and H.-S. Kwon, Met. Mater. Int. 11, 309 (2005).

    Article  Google Scholar 

  27. N. Parnian, Mater. Des. 36, 788 (2012).

    Article  Google Scholar 

  28. M. Asadian, M. Sabzi, and S. H. Maansavi Anijdan, Int. J. Pressure Vessels Piping 171, 184 (2019).

    Article  Google Scholar 

  29. Z. Liu, X. Gao, and L. Du, Electrochim. Acta 232, 528 (2017).

    Article  Google Scholar 

  30. L. Lin, Y. Li, and F. H. Wang, J. Mater. Sci. Technol. 26, 1 (2010).

    Article  Google Scholar 

  31. A. N. Isfahany, H. Saghafian, and G. Borhani, J. Alloys Compd. 509, 3931 (2011).

    Article  Google Scholar 

  32. C. V. Prabhu Gauncar, A. M. Huntz,and P. Lacombe, Met. Sci. 14, 241 (1980).

    Google Scholar 

  33. Y. S. Choi, J. G. Kim, Y. S. Park, and J. Y. Park, Mater. Lett. 61, 244 (2007).

    Article  Google Scholar 

  34. H. Y. Li, C. F. Dong, K. Xiao, X.-G. Li, P. Zhong, Acta Metall. Sin. (Engl. Lett.) 29, 1064 (2016).

    Article  Google Scholar 

  35. P. D. Bibmes, C. L. Llorente, and C. M. Mendez, Corros. Sci. 51, 876 (2009).

    Article  Google Scholar 

  36. S. K. Bonagani, V. Bathula, and V. Kain, Corros. Sci. 131, 340 (2018).

    Article  Google Scholar 

  37. J. W. Park, V. S. Rao, and H. S. Kwon, Corrosion 60, 1099 (2004).

    Article  Google Scholar 

  38. M. Monnot, R. P. Nogueira, V. Roche, G. Berthom, E. Chauveau, R. Estevez, and M. Mantel, Appl. Surf. Sci. 394, 132 (2017).

    Article  ADS  Google Scholar 

  39. P. M. Singh, O. Ige, and J. Mahmood, Corrosion 59, 843 (2003).

    Article  Google Scholar 

  40. H. H. Horowitz, Corros. Sci. 23, 353 (1983).

    Article  Google Scholar 

  41. A. Tomio, M. Sagora, T. Doi, H. Amaya, and T. Kudo, Corros. Sci. 98, 391 (2015).

    Article  Google Scholar 

  42. S. I. Cristini, B. Sacchi, S. Guerrini, E. Guerrini, and S. Trasatti, Russ. J. Electrochem. 46, 1094 (2010).

    Article  Google Scholar 

  43. H. Luo, X. Wang, C. Dong, K. Xiao, and X. Li, Corros. Sci. 124, 178 (2017).

    Article  Google Scholar 

  44. C. S. Brandold, M. A. Rosa, L. B. Ramos, R. M. Schroeder, C. F. Malfatti, and I. L. Muller, Mater. Sci. Technol. 33, 227 (2017).

    Article  Google Scholar 

  45. V. S. Moura, L. D. Lima, J. M. Pardal, A. Y. Kina, R. R. A. Corte, and S. S. M. Tavares, Mater. Charact. 59, 1127 (2008).

    Article  Google Scholar 

  46. R. S. Silverstain, O. Sobol, Th. Boellinghaus, W. Unger, and D. Eliezer, J. Alloys Compd. 695, 2689 (2017).

    Article  Google Scholar 

  47. L. F. Garfias-Messias and J. M. Sykes, Corros. Sci. 54, 40 (1998).

    Article  Google Scholar 

  48. S. B. Kim, K. W. Paik, and Y. G. Kim, Mater. Sci. Eng. A 247, 67 (1998).

    Article  Google Scholar 

  49. M. Pohl, O. Stolz, and T. Glogowski, Mater. Charact. 58, 65 (2007).

    Article  Google Scholar 

  50. H.-Y. Ha, T.-H. Lee, C.-G. Lee, and H. Yoo, Corros. Sci. 149, 226 (2019).

    Article  ADS  Google Scholar 

  51. A. F. Padilha and R. L. Plaut, in Duplex Stainless Steels, Ed. by I. Alvares-Armas and S. Degallaix-Moreuli (Wiley-ISTE, 2009), p. 115.

    Google Scholar 

  52. A. Kasiwaz, N. P. Vennela, S. L. Kamath, and R. K. Khatirkar, Mater. Charact. 74, 55 (2012).

    Article  Google Scholar 

  53. E. A. Melo and R. Magnabosco, Metall. Mater. Trans. A 48, 5273 (2017).

    Article  Google Scholar 

  54. B. R. S. da Silva, F. Salvio, and D. S. dos Santos, Int. J. Hydrogen Energy 40, 17091 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. I. Petrov or M. V. Razuvaeva.

Ethics declarations

The authors claim that there are no conflicts of interests

Additional information

Translated by N. Wadhwa

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrov, A.I., Razuvaeva, M.V. Stress Corrosion Cracking of Metals and Alloys in Aggressive H2S–CO2–Cl Environments. Tech. Phys. 64, 1814–1820 (2019). https://doi.org/10.1134/S1063784219120211

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219120211

Navigation