Skip to main content
Log in

Analysis of Loss Factor of Supercooled Pore Water at Frequencies of 60–140 GHz

  • STATISTICAL RADIOPHYSICS
  • Published:
Journal of Communications Technology and Electronics Aims and scope Submit manuscript

Abstract

Loss factor of supercooled pore water is studied at frequencies of 60–140 GHz at temperatures of down to –70°C using silica gel. It is shown that, with disregard of the effect of monomolecular nonfreezing layer of bound water, the loss factor of pore water in the silicate material is determined by the Debye relaxation of water corresponding to the properties of bulk water, additional loss in a temperature interval centered at ‒45°C owing to the effect of the second critical point of water, and the surface conduction at the interface due to the formation of ferroelectric ice 0 provided that the freezing point of water in pores is lower than ‒23°C. The experimental results can be used in the problems of radiation transfer in aerosols and porous wetted finely dispersed media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. S. Bordonskii, A. O. Orlov, and Yu. B. Khapin, Sovrem. Probl. Distantsion. Zondir. Zemli iz Kosm. 14, 255 (2017).

  2. T. Meissner and F. J. Wentz, IEEE Trans. Geosci. Remote Sens. 42, 1836 (2004).

    Article  Google Scholar 

  3. S. M. Korobeynikov, A. V. Melekhov, Yu. G. Soloveitchik, et al., J. Phys. D: Appl. Phys. 38, 915 (2005).

    Article  Google Scholar 

  4. G. S. Bordonskii, A. O. Orlov, and K. A. Shchegrina, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 59, 906 (2016).

    Google Scholar 

  5. A. E. Basharinov and B. G. Kutuza, Tr. Glav. Geofiz. Observat., No. 222, 100 (1968).

  6. A. E. Basharinov and B. G. Kutuza, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 17, 52 (1974).

    Google Scholar 

  7. D. Bertolini, M. Cassettari, and G. Salvetti, J. Chem. Phys. 76, 3285 (1982).

    Article  Google Scholar 

  8. C. Rønne, L. Thrane, P.-O. Åstrand, et al., J. Chem. Phys. 107, 5319 (1997).

    Article  Google Scholar 

  9. H. R. Zelsmann, J. Mol. Struct. 350, 95 (1995).

    Article  Google Scholar 

  10. G. Santachiara and F. Belosi, Atmospheric & Climate Sci. 4, 653 (2014).

    Article  Google Scholar 

  11. H. E. Stanley, S. V. Buldyrev, G. Franzese, et al., Phys. A: Stat. Mech. Appl. 389, 2880 (2010).

    Article  Google Scholar 

  12. D. T. Limmer and D. Chandler, J. Chem. Phys. 135, 134503 (2011).

    Article  Google Scholar 

  13. A. B. Akvilonova and B. G. Kutuza, Radiotekh. Elektron. (Moscow) 23, 1792 (1978).

    Google Scholar 

  14. D. Rosenfeld and W. L. Woodley, Nature 405, 440 (2000).

    Article  Google Scholar 

  15. V. A. Parshukov and B. G. Kutuza, J. Commun. Technol. Electron. 57, 117 (2012).

    Article  Google Scholar 

  16. G. S. Bordonskii and S. D. Krylov, Zh. Fiz. Khimii A 86, 1806 (2012).

    Google Scholar 

  17. S. R.-V. Castrillon, N. Giovambattista, I. A. Arsay, and P. G. Debenedetti, J. Phys. Chem. C 115, 4624 (2011).

    Article  Google Scholar 

  18. S. Cerveny, F. Mallamace, J. Swenson, et al., Chem. Rev. 116, 7608 (2016).

    Article  Google Scholar 

  19. H. Haken, Synergetics (Springer-Verlag, Berlin, 1997; URSS, LENAND, Moscow, 2015), Pt. 1, 2.

  20. G. S. Bordonskii, A. O. Orlov, and T. G. Filippova, Izv. Vyssh. Uchebn. Zaved. Radiofiz. 47, 292 (2004).

    Google Scholar 

  21. C. Mätzler, P. W. Rosenkranz, and J. Cermak, J. Geophys. Res. Atmos. 115 (D23), D23208 (2010).

    Article  Google Scholar 

  22. C. Mätzler and U. Wegmuller, J. Phys. D: Appl. Phys. 20, 1623 (1987).

    Article  Google Scholar 

  23. G. S. Bordonsky and S. D. Krylov, IEEE Trans. Geosci. Remote Sens. 36, 678 (1998).

    Article  Google Scholar 

  24. Yu. I. Alekseev, Prib. Tekh. Eksp., No. 2, 177 (2008).

  25. L. Xu, P. Kumar, S. V. Buldyrev, et al., Proc. Natl. Acad. Sci. USA 102, 16558 (2005).

    Article  Google Scholar 

  26. M. A. Anisimov, Russ. J. Phys. Chem. B 6, 861 (2012).

    Article  Google Scholar 

  27. G. S. Bordonskii and A. A. Gurulev, Tech. Phys. Lett. 43, 380 (2017).

    Article  Google Scholar 

  28. C. A. Angell, W. J. Sichina, and M. Oguni, J. Phys. Chem. 86, 998 (1982).

    Article  Google Scholar 

  29. P. O. Fedichev, L. I. Menshikov, G. S. Bordonskiy, and A. O. Orlov, JETP Lett. 94, 401 (2011).

    Article  Google Scholar 

  30. J. Russo, F. Romano, and H. Tanaka, Nature Mater. 13, 733 (2014).

    Article  Google Scholar 

  31. D. Quigley, D. Alfè, and B. Slater, J. Chem. Phys. 141, 161102 (2014).

    Article  Google Scholar 

  32. G. S. Bordonskiy and A. O. Orlov, JETP Lett. 195, 492 (2017).

    Article  Google Scholar 

  33. Sh. Fujita, T. Matsuoka, T. Ishida, et al., Physics of Ice Core Records (Hokkaido Univ., Sapporo, 2000).

    Google Scholar 

  34. V. I. Gaiduk and B. G. Kutuza, Opt. Spectroscopy 101, 698 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Bordonskii.

Additional information

Translated by A. Chikishev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordonskii, G.S., Orlov, A.O. & Krylov, S.D. Analysis of Loss Factor of Supercooled Pore Water at Frequencies of 60–140 GHz. J. Commun. Technol. Electron. 64, 375–380 (2019). https://doi.org/10.1134/S1064226919040028

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064226919040028

Navigation