Skip to main content
Log in

Forest Litters as a Link in the Carbon Cycle in Coniferous–Broadleaved Forests of the Southern Far East of Russia

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Forest litter as a component of the carbon cycle in pine–broadleaved forests of different ages was characterized. Field studies of the forest site of the Primorskaya State Agricultural Academy in the south of the Sikhote Alin Range continued for three years. Multiple sampling of forest litter and plant litter fall and measurements of the CO2 emission from the litter and underlying soil horizons were performed on test plots. The maximum litter pool (14.44 ± 0.86 t/ha) was found in the mature stand of Pinus koraiensis; the minimum litter pool (11.52 ± 0.65 t/ha), in the 80-year-old stand. The carbon stock in the litters amounted to 3.7% of the phytomass carbon. The rate of carbon turnover in the forest litters was relatively low in comparison with that in other regions: the ratio of carbon pools in the litter horizons and annual plant falloff reached 3.5. The winter season provided about 10–25% of the annual plant litter fall. The data obtained in this study describe a part of the carbon cycle and contribute to our understanding of the ecosystem function of climate regulation by valuable forest massifs in the south of the Far East of Russia. In this region, the decomposition of forest litters generates the CO2 flux amounting up to 16% of the total CO2 emission from the soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. S. Bobkova, A. V. Mashika, and A. V. Smagin, Dynamics of Organic Carbon Content in Middle-Taiga Spruce Forests on Automorphic Soils (Nauka, St. Petersburg, 2014) [in Russian].

    Google Scholar 

  2. K. S. Bobkova and A. F. Osipov, “Carbon cycle in the phytocenosis–soil system of the blueberry–sphagnum pine forests of middle taiga in the Komi Republic,” Lesovedenie, No. 2, 11–18 (2012).

    Google Scholar 

  3. E. F. Vedrova, “Organic matter decomposition in forest litters,” Eurasian Soil Sci. 30 (2), 181–188 (1997).

    Google Scholar 

  4. E. F. Vedrova, “Transformation of plant remains in 25-year-old cultures of main forest-forming tree species of Siberia,” Lesovedenie, No. 4, 13–21 (1995).

    Google Scholar 

  5. D. G. Zamolodchikov and A. V. Ivanov, “Carbon pools and fluxes in forests of the Ussuri forestry according to evaluation by the ROBUL system,” Agrar. Vestn. Primor’ya, No. 1, 12–15 (2016).

    Google Scholar 

  6. A. V. Ivanov, “The reserves of forest litter in the cedar–broadleaved forests of the southern Sikhote-Alin,” Sib. Lesn. Zh., No. 5, 87–95 (2015).

    Google Scholar 

  7. A. V. Ivanov, D. G. Zamolodchikov, and V. A. Tataurov, “Respiration of forest soils in coniferous–broadleaved forests of the southern part of Primorskii region,” in Proceedings of All-Russian Conference with International Participation “Sustainable Management of Forests in Siberia and the Far East” (Khabarovsk, 2014), pp. 427–430.

    Google Scholar 

  8. A. V. Ivanov and A. S. Kasatkin, “Dynamics of aboveground phytomass in chronological recovery succession of cedar–broadleaved forest,” All-Russia Conference “Boreal Forests: Status, Dynamics, and Ecosystem Services,” Abstracts of Papers (Karelian Scientific Center, Russian Academy of Sciences, Petrozavodsk, 2017), pp. 118–119.

    Google Scholar 

  9. D. V. Karelin, D. I. Lyuri, S. V. Goryachkin, V. N. Lunin, and A. V. Kudikov, “Changes in the carbon dioxide emission from soils in the course of postagrogenic succession in the chernozems forest-steppe,” Eurasian Soil Sci. 48, 1229–1241 (2015). doi 10.1134/S1064229315110095

    Article  Google Scholar 

  10. L. O. Karpachevskii, Forests and Forest Soils (Lesnaya Prom-st, Moscow, 1981) [in Russian].

    Google Scholar 

  11. A. S. Kasatkin, A. S. Zhanabaeva, A. V. Ivanov, D. V. Paukov, and R. Yu. Akimov, “Aboveground phytomass of trees in forests of southern Sikhote-Alin, Part 3,” Eko-Potentsial, No. 1 (13), 32–36 (2016).

    Google Scholar 

  12. A. S. Kasatkin, A. S. Zhanabaeva, D. V. Paukov, R. Yu. Akimov, and V. A. Tataurov, “Aboveground phytomass of trees in forests of southern Sikhote-Alin, Part 2,” Eko-Potentsial, No. 4 (12), 28–31 (2015).

    Google Scholar 

  13. I. N. Kurganova, V. O. Lopes de Gerenyu, T. N. Myakshina, D. V. Sapronov, I. Yu. Savin, and E. V. Shorohova, “Carbon balance in forest ecosystems of southern part of Moscow region under a rising aridity of climate,” Contemp. Probl. Ecol. 10, 748–760 (2017).

    Article  Google Scholar 

  14. V. A. Mukhin, P. Yu. Voronin, A. V. Sukhareva, and Vl. V. Kuznetsov, “Wood decomposition by fungi in the boreal-humid forest zone under the conditions of climate warming,” Dokl. Biol. Sci. 431, 110–112 (2010).

    Article  Google Scholar 

  15. Good Practice Guidance for Land Use, Land-Use Change and Forestry IPCC/IGES, Ed. by J. Penman, M. Gytarsky, T. Hiraishi, T. Krug, D. Kruger, R. Pipatti, L. Buendia, K. Miwa, T. Ngara, K. Tanabe, and F. Wagner (Intergovernmental Panel on Climate Change, Hayama, 2003).

  16. A. P. Sapozhnikov, G. A. Selivanova, T. M. Il’ina, et al., Pedogenesis and Biological Cycle of Substances in Mountain Forests of Southern Sikhote-Alin (Far Eastern Scientific Research Institute of Forestry, Khabarovsk, 1993) [in Russian].

    Google Scholar 

  17. V. A. Semal’, “Properties of soils in southern Skhote-Alin using the example of the Ussuri Reserve,” Eurasian Soil Sci. 43 (3), 278–286 (2010).

    Article  Google Scholar 

  18. I. A. Smorkalov and E. L. Vorobeichik, “Stability of the CO2 emission from the forest litter affected by industrial pollution,” Lesovedenie, No. 1, 34–43 (2016).

    Google Scholar 

  19. K. P. Solov’ev, Cedar-Broadleaved Forests and Their Economics (Khabarovsk. Knizhn. Izd., Khabarovsk, 1958) [in Russian].

    Google Scholar 

  20. O. V. Chestnykh, V. A. Lyzhin, and A. V. Koksharova, “Carbon pools in the forest litters of Russia,” Lesovedenie, No. 6, 114–121 (2007).

    Google Scholar 

  21. D. Ciuldiene, J. Aleinikoviene, M. Muraškiene, V. Marozas, and K. Armolaitis, “Release and retention patterns of organic compounds and nutrients after the cold period in foliar litterfall of pure European larch, common beech and red oak plantations in Lithuania,” Eurasian Soil Sci. 50, 49–56 (2017). doi 10.1134/S1064229316110028

    Article  Google Scholar 

  22. M. Ataka, Y. Kominami, M. Jomura, K. Yoshimura, and C. Uematsu, “CO2 efflux from leaf litter focused on spatial and temporal heterogeneity of moisture,” J. For. Res. 19 (2), 295–300 (2014). doi 10.1007/s10310-013-0422-1

    Article  Google Scholar 

  23. M. Atarashi-Andoh, J. Korashi, S. Ishizuka, and K. Hirai, “Seasonal patterns and control factors of CO2 effluxes from surface litter, soil organic carbon, and root-derived carbon estimated using radiocarbon signatures,” Agric. For. Meteorol. 152, 149–158 (2012). doi 10.1016/j.agrformet.2011.09.015

    Article  Google Scholar 

  24. B. Bond-Lamberty and A. Thomson, “Temperatureassociated increases in the global soil respiration record,” Nature 464, 579–582 (2010). doi 10.1038/nature08930

    Article  Google Scholar 

  25. L. M. Cisneros-Dozal, S. E. Trumbore, and P. J. Hanson, “Effect of moisture on leaf litter decomposition and its contribution to soil respiration in a temperate forest,” J. Geophys. Res.: Biogeosci. 112 (10), G01013 (2007).

    Google Scholar 

  26. J. L. DeForest, J. Chen, and S. G. McNulty, “Leaf litter is an important mediator of soil respiration in an oak-dominated forest,” Int. J. Biometeorol. 53 (2), 127–134 (2009). doi 10.1007/s00484-008-0195-y

    Article  Google Scholar 

  27. Field Measurements for Forest Carbon Monitoring, Ed. by C. M. Hoover (Apringer-Verlag, New York, 2008).

  28. P. Gottschalk, J. U. Smith, M. Wattenbach, J. Bellarby, E. Stehfest, N. Arnell, et al., “How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios,” Biogeosciences 9, 3151–3171 (2012). doi 10.5194/bg-9-3151-2012

    Article  Google Scholar 

  29. P. J. Hanson, E. G. O’Neill, M. L. S. Chambers, J. S. Riggs, J. D. Joslin, and M. H. Wolfe, “Soil respiration and litter decomposition,” in North America Temperate Deciduous Forest Responses to Changing Precipitation Regimes (Springer-Verlag, New York, 2003), pp. 163–189. doi 10.1007/978-1-4613-0021-2_10

    Chapter  Google Scholar 

  30. R. B. Jackson, J. G. Canadell, C. Le Quéré, R. M. Andrew, J. I. Korsbakken, G. P. Peters, and N. Nakicenovic, “Reaching peak emissions,” Nat. Clim. Change 6, 7–10 (2016). doi doi 10.1038/NCLIMATE2892

    Article  Google Scholar 

  31. C. Jones, C. McConnell, K. Coleman, P. Cox, P. Falloon, D. Jenkinson, et al., “Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil,” Global Change Biol. 11, 154–166 (2005). doi 10.1111/j.1365-2486.2004.00885.x

    Article  Google Scholar 

  32. D. B. Metcalfe, P. Meir, E. O. C. Aragao, Y. Malhi, A.C. L. da Costa, A. Braga, P. H. L. Concalves, J. de Athaydes, S. S. de Almeida, and M. Williams, “Factors controlling spatio-temporal variation in carbon dioxide efflux from surface litter, roots, and soil organic matter at four rain forest sites in the eastern Amazon,” J. Geophys. Res. 112, 1–9 (2007). doi 10.1029/2007JG000443

    Article  Google Scholar 

  33. Y. Nakamura and P. V. Krestov, “Coniferous forests of the temperate zone of Asia,” in Ecosystems of the World, Vol. 6: Coniferous Forests (Elsevier, Amsterdam, 2005), pp. 163–220.

    Google Scholar 

  34. J. Ngao, D. Epron, C. Brechet, and A. Granier, “Estimating the contribution of leaf litter decomposition to soil CO2 efflux in a beech forest using 13C-depleted litter,” Global Change Biol. 11 (10), 1768–1776 (2004). doi 10.1111/j.1365-2486.2004.01014.x

    Article  Google Scholar 

  35. N. C. Prévost-Bouré, K. Soudani, C. Damesin, D. Berveillera, J.-C. Latac, and E. Dufrêne, “Increase in aboveground fresh litter quantity over-stimulate soil respiration in a temperate deciduous forest,” Appl. Soil Ecol. 46 (1), 26–34 (2010). doi 10.1016/j.apsoil.2010.06.004

    Article  Google Scholar 

  36. J. W. Raich and W. H. Schlesinger, “The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate,” Tellus B 44 (2), 81–99 (1992). doi 10.1034/j.1600-0889.1992.t01-1-00001.x

    Article  Google Scholar 

  37. P. Smith, “Soils and climate change,” Curr. Opin. Environ. Sustainability 4 (5), 539–544 (2012). doi 10.1016/j.cosust.2012.06.005

    Article  Google Scholar 

  38. E. W. Sulzman, J. B. Brant, R. D. Bowden, and K. Lajtha, “Contribution of aboveground litter, belowground litter, and rhizosphere respiration to total soil CO2 efflux in an old growth coniferous forest,” Biogeochemistry 73, 231–256 (2005). doi 10.1007/s10533-004-7314-6

    Article  Google Scholar 

  39. Y. Wang, H. Wang, Z. Ma, X. Wen, Q. Li, Y. Liu, X. Sun, and G. Yu, “Contribution of aboveground litter decomposition to soil respiration in a subtropical coniferous plantation in Southern China,” Asia-Pac. J. Atmos. Sci. 45 (2), 137–147 (2009).

    Article  Google Scholar 

  40. W. Xiao, X. Ge, L. Zeng, et al., “Rates of litter decomposition and soil respiration in relation to soil temperature and water in different-aged Pinus massoniana forests in the three gorges reservoir area, China,” PLoS One 9 (7), e101890 (2014).

    Article  Google Scholar 

  41. A. Y. Yurova, E. M. Volodin, G. I. Agren, O. G. Chertov, and A. S. Komarov, “Effects of variations in simulated changes in soil carbon contents and dynamics on future climate projections,” Global Change Biol. 16, 823–835 (2010). doi 10.1111/j.1365-2486.2009.01992.x

    Article  Google Scholar 

  42. M. Zimmermann, P. Meir, M. Bird, Y. Malhi, and A. Cahuana, “Litter contribution to diurnal and annual soil respiration in a tropical montane cloud forest,” Soil Biol. Biochem. 41 (6), 1338–1340 (2009). doi 10.1016/j.soilbio.2009.02.023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ivanov.

Additional information

Original Russian Text © A.V. Ivanov, M. Braun, D.G. Zamolodchikov, D.V. Lynov, E.V. Panfilova, 2018, published in Pochvovedenie, 2018, No. 10, pp. 1226–1233.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, A.V., Braun, M., Zamolodchikov, D.G. et al. Forest Litters as a Link in the Carbon Cycle in Coniferous–Broadleaved Forests of the Southern Far East of Russia. Eurasian Soil Sc. 51, 1164–1171 (2018). https://doi.org/10.1134/S1064229318100058

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229318100058

Keywords

Navigation