Skip to main content
Log in

Labeling of Aspirin with 99mTc to Obtain a Possible Tumor Imaging Agent

  • Published:
Radiochemistry Aims and scope

Abstract

About 35% reduction in cancer deaths among patients having solid tumors is related to using aspirin, which encouraged us to develop a new specific tumor diagnostic radiopharmaceutical agent. This can be done by direct labeling of aspirin with technetium-99m using stannous chloride as a reductant at pH 9. At this pH, aspirin is saponificated to salicylate ions. Salicylate binds to pertechenetate to form 99mTc salicylate complex. The radiochemical yield (RCY, %) of 99mTc-salicylate complex obtained from aspirin was determined using paper chromatography, electrophoresis, and HPLC and was found to reach 90.2%. The 99mTc salicylate complex obtained from aspirin was stable for up to 5 h. The tumor uptake of the 99mTc salicylate complex obtained from aspirin was determined by ex-vivo study in tumor-bearing mice. This study showed that 99mTc salicylate complex was concentrated in tumor sites (ascites or solid), allowing tumor radioimaging. High target/non-target (tumor muscles/normal muscles) uptake ratio shows that 99mTc salicylate complex can be utilized for early detection of solid tumors. Molecular modeling and docking study conofirm the possibility of using the radiolabeled 99mTc salicylate complex for specific cancer imaging in binding with epidermal growth factor receptors (EGFR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. Bernhard, W., El-Sayed, A., Barreto, K., et al., Oncotarget, 2018, vol. 9, no. 5, pp. 6213–6227.

    Article  Google Scholar 

  2. Gao, M., Su, H., Lin, G., et al., Nanoscale, 2016, vol. 8, no. 32, pp. 15027–15032.

    Article  CAS  Google Scholar 

  3. Drugs.com: American Society of Health-System Pharmacists, June 6, 2016. Retrieved Aug. 30, 2016.

  4. Krumholz, A., Sung, G.Y., Fisher, R.S., et al., Neurology, 1995, vol. 45, pp. 1499–1505.

    Article  CAS  Google Scholar 

  5. Kassis, A.I., Exper tOpin. Drug Deliv., 2005, vol. 2, no. 6, pp. 981–991.

    Article  CAS  Google Scholar 

  6. El-Ghany, E.A., Mahdy, M.A., Attallah, K., and Ghazy, F.S., J. Radioanal. Nucl. Chem., 2002, vol. 252, no. 1, pp. 165–169.

    Article  CAS  Google Scholar 

  7. Motaleb, M.A., Moustapha, M.E., and Ibrahim, I.T., J. Radioanal. Nucl Chem., 2011, vol. 289, no. 7, pp. 239–245.

    Article  CAS  Google Scholar 

  8. Liu, F.E.I., Youfeng, H.E., and Luo, Z., IAEA Tech. Rep. Ser., 2004, no. 426, pp. 37–52.

    Google Scholar 

  9. Greenwood, N. and Earnshaw, A., Origin of the Elements, Isotopes and Atomic Weights,Chemistry of theElements, Oxford: Elsevier, 1997.

    Google Scholar 

  10. Bodei, L., Cremonesi, M., Zoboli, S., et al., Eur. J. Nucl. Med. Mol. Imaging, 2003, vol. 30, pp. 207–216.

    Article  CAS  Google Scholar 

  11. Jovanović, V., Maksin, T., Konstantinovska, D., et al., J. Radioanal Nucl. Chem., 1980, vol. 59, no. 1, pp. 239–243.

    Article  Google Scholar 

  12. Motaleb, M.A., El-Kolaly, M.T., Rashed, H.M., and Abd El-Bary, A., J. Radioanal. Nucl. Chem., 2012, vol. 292, pp. 629–635.

    Article  CAS  Google Scholar 

  13. Jack, D.B., Lancet, 1997, vol. 350, no. 9075, pp. 437–439.

    Article  CAS  Google Scholar 

  14. Schenone, A.L. and Lincoff, A.M., Cleveland Clinic J. Med., 2020 vol. 87, no. 5, p. 300311

    Google Scholar 

  15. Andrew, T., Peters, M.D., and Kannan, R.M., JAMA, 2020, vol. 323, no. 7, p. 676

    Article  Google Scholar 

  16. Cao, Y., and Tan, A., Medicine, 2020, vol. 99, no. 38, p. e21917.

    Article  Google Scholar 

  17. Langley, R.E., Burdett, S., Tierney, J.F., et al., Br. J. Cancer, 2011, vol. 105, no. 8, pp. 1107–1113.

    Article  CAS  Google Scholar 

  18. Langley, R.E., Ecancer, 2013, vol. 7, pp. 297–303.

    Google Scholar 

  19. Song, Y., Zhong, X., Gao, P., et al., Front. Endocrinol., 2020, vol. 11, ID 3.

    Article  Google Scholar 

  20. Algra, A.M. and Rothwell, P.M., Lancet Oncology, 2012, vol. 13, no. 5, pp. 518–527.

    Article  CAS  Google Scholar 

  21. Burn, J., Sheth, H., Elliott, F., et al., Lancet, 2020, vol. 395, pp. 1855–1863.

    Article  CAS  Google Scholar 

  22. Rothwell, P.M., Wilson, M., Price, J.F., et al., Lancet, 2012, vol. 379, pp. 1591–1601.

    Article  CAS  Google Scholar 

  23. Huang, L., Gainkam L.O., Caveliers, V., et al., Mol. Imaging Biol., 2008, vol. 10, no. 3, pp. 167–175.

    Article  Google Scholar 

  24. Ferrit, M., del Valle, C., and Martínez, F., Eur. J. Pharm. Sci., 2007, vol. 31, nos. 3–4, pp. 211–220.

    Article  CAS  Google Scholar 

  25. Kamal, O., Benlyamani, A., Serdaoui, F., Riri, M., and Cherif, A., Open J. Phys. Chem., 2012, vol. 2, pp. 81–87.

    Article  CAS  Google Scholar 

  26. Ibrahim, I.T., Attallah, K.H., Elsaid, M., et al., Radiochemistry, 2019, vol. 61, no. 2, pp. 220–225.

    Article  CAS  Google Scholar 

  27. Ibrahim, I.T. and Wally, M.A., J. Radioanal. Nucl. Chem., 2010, vol. 285, pp. 169–175.

    Article  CAS  Google Scholar 

  28. Sanad, M.H., Saad, M.M., Fouzy, A.S.M., et al., J. Mol. Imaging Dyn., 2016, vol. 6, ID 2.

    Google Scholar 

  29. Moustapha, E.M., Motaleb, M., and Ibrahim, I.T., J. Radioanal. Nucl. Chem., 2011, vol. 287, pp. 35–40.

    Article  CAS  Google Scholar 

  30. Othman, S.H., Ibrahim, I.T., Hatab, M.H., and El-Barbary, A.M., Int. J. Biol. Macromol., 2016, vol. 92, pp. 550–560.

    Article  CAS  Google Scholar 

  31. Tamirat, M.Z., Koivu, M., Elenius, K., and Johnson, M.S., PLoS One, 2019, vol. 14, no. 9, p. e0222814

    Article  Google Scholar 

  32. Khedr, M.A., Rashed, H.M., Farag, H., and Sakr, T.M., Bioorg. Chem., 2019, vol. 92, ID 103282.

    Article  CAS  Google Scholar 

  33. Abd Elhalim, S.M. and Ibrahim, I.T., Appl. Radiat. Isot., 2015, vol. 95, pp. 153–158.

    Article  CAS  Google Scholar 

  34. Amin, A.M., Ibrahim, I.T. and Attallah, K.M., Radiochemistry, 2014, vol. 56, no. 1, pp. 72–75.

    Article  CAS  Google Scholar 

  35. Schibli, R., Bella, R.L., Alberto, R., Garcia-Garayoa, E., Ortner, K., Abram, U., and Schubiger, P.A., Bioconjugate Chem., 2000, vol. 11, no. 3, pp. 345–351.

    Article  CAS  Google Scholar 

  36. Alfonso, L., Ai, G., Spitale, R., and Bhat, G., Brit. J. Cancer, 2014, vol. 111, no. 1, pp. 61–67.

    Article  CAS  Google Scholar 

  37. Bashir, A.I., Kankipati, C.S., Jones, S., et al., Int. J. Oncol., 2019, vol. 54, no. 4, pp. 1256–1270.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang, X., Feng, Y., Liu, X., et al., J. Cancer Res. Clin. Oncol., 2019, vol. 145, pp. 1387–1403.

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Deanship of Scientific Research at Umm Al-Qura University, Makkah, Saudi Arabia (grant code: 19-MED-1-01-0038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to K. M. Attallah or I. T. Ibrahim.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dawoud, M., Attallah, K.M., Abdelhalim, S.M. et al. Labeling of Aspirin with 99mTc to Obtain a Possible Tumor Imaging Agent. Radiochemistry 63, 820–827 (2021). https://doi.org/10.1134/S106636222106014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106636222106014X

Keywords:

Navigation