Skip to main content
Log in

Effects of climate change on the distribution of endemic Ferula xylorhachis Rech.f. (Apiaceae: Scandiceae) in Iran: Predictions from ecological niche models

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract

Ferula xylorhachis Rech.f. is an endemic plant species belonging to the Apiaceae family and distributed in northeastern Iran. In the present study, we attempted to determine the factors with the greatest effects on the distribution of this species and to determine suitable regions for it based on current and future conditions. The Maximum Entropy method was used in the present study and the results indicated that the Mean Temperature of Wettest Quarter (48.2%), Precipitation of Wettest Quarter (49.1%), and Precipitation of Wettest Month (61.4%) are the most important factors in the current and in two future periods (2040 and 2070). The models suggest that suitable regions for the presence of this species will change over time and that the species will encounter limitations through changes such as moisture reduction. According to the A1B scenario, increases in greenhouse gases such as CO2 and CH4 will have direct effects on future precipitation and temperature and these factors will be important in determining species dispersion. Evaluation of important habitat factors using normal ecological methods will help in developing the best conservation programs in the future. Introducing species to new regions will help to protect them from the extinction risk caused by climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Araujo, M.B. and Guisan, A., Five (or so) challenges for species distribution modelling, J. Biogeogr., 2006, vol. 33, pp. 1677–1688.

    Article  Google Scholar 

  • Ardestani, E.G., Tarkesh, M., Bassiri, M., Vahabi, M.R., Potential habitat modeling for reintroduction of three native plant species in central Iran, J. Arid Land, 2015, vol. 7, no. 3, pp. 381–390.

    Article  Google Scholar 

  • Buckley, B.M., Anchukaitis, K.J., Penny, D., Fletcher, R., Cook, E.R., Sano, M., Wichienkeeo, A., Minh, T.T., and Hong, T.M. Climate as a contributing factor in the demise of Angkor, Cambodia, Proc. Natl. Acad. Sci. U. S. A., 2010, vol. 107, pp. 6748–6752.

  • Chamberlain, D., Rechinger, K., and Rechinger, K., Ferula L. Umbelliferae, Flora Iranica, 1987, vol. 162, pp. 387–426.

  • Chen, X. and Liu, Q., Luteolin glycosides as taxonomic markers in Ferula and related genera, Biochem. Syst. Ecol., 1989, vol. 17, pp. 309–310.

    Article  CAS  Google Scholar 

  • Drude, C.G.O. (1897–1898). Umbelliferae, in Die natürlichen Pflanzenfamilien, vol. 3, Engler, A. and Prantl, K., Eds., 1997, pp. 63–250.

    Google Scholar 

  • Elith, J. and Leathwick, J.R., Species distribution models: Ecological explanation and prediction across space and time, Annu. Rev. Ecol. Evol. Syst., 2009, vol. 40, pp. 677–697.

    Article  Google Scholar 

  • Elith, J., Graham, C.H., Anderson R.P., Dudík, M., Ferrier, S., Guisan, A.J., Hijmans, R., Huettmann, F., Leathwick, J.R., Lehmann, A., Li, J., Lohmann, L.G., Bette, A., Loiselle, B.A., Manion, G., Moritz, C., et al., Novel methods improve prediction of species’ distributions from occurrence data, Ecography, 2006, vol. 29, no. 1, pp. 129–151.

    Article  Google Scholar 

  • Elith. J., Phillips, S.J., Hastie, T., Dudík, M., Chee, Y.E., and Yates, C.J., A statistical explanation of MaxEnt for ecologists, Divers. Distrib., 2011, vol. 17, pp. 43–57.

    Article  Google Scholar 

  • Evans, J.P., 21st century climate change in the Middle East, Climatic Change, 2009, vol. 92, pp. 417–432.

    Article  Google Scholar 

  • Funk V. and Richardson. K., Systematic data in biodiversity studies: Use it or lose it, Syst. Biol., 2002, vol. 51, pp. 303–316.

    Article  CAS  PubMed  Google Scholar 

  • Graham, C.H., Ron, S.R., Santos, J.C., Schneider, C.J., and Moritz, C., Integrating phylogenetics and environmental niche models to explore speciation mechanisms in dendrobatid frogs, Evolution, 2004, vol. 58, pp. 1781–1793.

    Article  PubMed  Google Scholar 

  • Guisan, A., Graham, C.H., Elith, J., and Huettmann, F., Sensitivity of predictive species distribution models to change in grain size, Divers. Distrib., 2007, vol. 13, pp. 332–340.

    Article  Google Scholar 

  • Hernandez, P.A., Graham, C.H., Master, L.L., and Albert, D.L., The effect of sample size and species characteristics on performance of different species distribution modeling methods, Ecography, 2006, vol. 29, pp. 773–785.

    Article  Google Scholar 

  • Hirzel, A.H., Hausser, J., Chessel, D., and Perrin, N., Ecological- niche factor analysis: How to compute habitat-suitability maps without absence data?, Ecology, 2002, vol. 83, pp. 2027–2036.

    Article  Google Scholar 

  • Hosseini, S., Kappas, M., Chahouki, M.Z., Gerold, G., Erasmi, S., and Emam, A.R., Modelling potential habitats for Artemisia sieberi and Artemisia aucheri in Poshtkouh area, central Iran using the maximum entropy model and geostatistics, Ecol. Inform., 2013, vol. 18, pp. 61–68.

    Google Scholar 

  • Hosseinian Yousefkhani, S.S., Ficetola, G.F., Rastegar-Pouyani, N., Ananjeva, N.B., Rastegar-Pouyani, E., and Masroor, R., Environmental suitability and distribution of the Caucasian Rock Agama, Paralaudakia caucasia (Sauria: Agamidae) in western and central Asia, Asian Herpetol. Res., 2013, vol. 4, pp. 207–213.

    Google Scholar 

  • Korovin, E., Koroleva, K., Krishtofovitch, A., Mandenova, I., Poyarkova, A., and Shishkin, B., Umbelliferae, Flora SSSR (Flora of the Soviet Union), vol. 17, Moscow: Akad. Nauk SSSR, 1951.

    Google Scholar 

  • Kozak, K.H. and Wiens, J., Does niche conservatism promote speciation? A case study in North American salamanders, Evolution, 2006, vol. 60, pp. 2604–2621.

    Article  PubMed  Google Scholar 

  • Kraxner, F. and Nordström, E.-M., Bioenergy futures: A global outlook on the implications of land use for forestbased feedstock production, in The Future Use of Nordic Forests, Springer, 2015, pp. 63–81.

  • Kumar, S. and Stohlgren, T.J., Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia, J. Ecol. Nat. Environ., 2009, vol. 1, pp. 094–098.

    Google Scholar 

  • Kurzyna-Mlynik, R., Oskolski, A.A., Downie, S.R., Kopacz, R., Wojewódzka, A., and Spalik, K., Phylogenetic position of the genus Ferula (Apiaceae) and its placement in tribe Scandiceae as inferred from nrDNA ITS sequence variation, Plant Syst. Evol., 2008, vol. 274, pp. 47–66.

    Article  CAS  Google Scholar 

  • Lepš, J., What do the biodiversity experiments tell us about consequences of plant species loss in the real world?, Basic Appl. Ecol., 2004, vol. 5, pp. 529–534.

    Article  Google Scholar 

  • Menglan, S., Fading, P., Zehui, P., Watson, M.F., Cannon, J.F., Holmes-Smith, I., Kljuykov, E.V., Phillippe, L.R., and Pimenov, M.G., Apiaceae (Umbelliferae), Flora of China, 2005, vol. 14, pp. 1–205.

    Google Scholar 

  • Munoz, D.G., Neumann, M., Kusaka, H., Yokota, O., Ishihara, K., Terada, S., Kuroda, S, Mackenzie, I.R., FUS pathology in basophilic inclusion body disease, Acta Neuropathol., 2009, vol. 118, pp. 617–627.

    Article  CAS  PubMed  Google Scholar 

  • Ortega-Huerta, M.A. and Peterson, A.T., Modeling ecological niches and predicting geographic distributions: A test of six presence-only methods, Rev. Mexicana Biodivers., 2008, vol. 79, pp. 205–216.

    Google Scholar 

  • Pearson, R.G., Species’ distribution modeling for conservation educators and practitioners, Lessons Conserv., 2010, vol. 3, pp. 54–89.

    Google Scholar 

  • Pesmen, H. and Davis, P., Potentilla L., in Flora of Turkey and the East Aegean Islands, vol. 4, 1972, pp. 41–68.

    Google Scholar 

  • Peterson, A.T., Ecological Niches and Geographic Distributions (MPB-49), Princeton, NJ: Princeton Univ. Press, 2011.

    Google Scholar 

  • Peterson, A.T., Martínez-Meyer, E., and González-Salazar, C., Reconstructing the Pleistocene geography of the Aphelocoma jays (Corvidae), Divers. Distrib., 2004, vol. 10, pp. 237–246.

    Article  Google Scholar 

  • Peterson, E.E., Theobald, D.M., and Ver Hoef, J.M., Geostatistical modelling on stream networks: Developing valid covariance matrices based on hydrologic distance and stream flow, Freshw. Biol., 2007, vol. 52, pp. 267–279.

    Article  Google Scholar 

  • Phillips, S.J., Anderson, R.P., and Schapire, R.E., Maximum entropy modeling of species geographic distributions, Ecol. Model., 2006, vol. 190, nos. 3–4, pp. 231–259.

    Article  Google Scholar 

  • Pimenov, M.G. and Leonov, M., The Genera of the Umbelliferae: A Nomenclator, Kew: Royal Botanic Gardens, 1993.

    Google Scholar 

  • Pimenov, M. and Leonov, M., The Asian Umbelliferae biodiversity database (ASIUM) with particular reference to South- West Asian taxa, Turk. J. Bot., 2004, vol. 28, pp. 139–145.

    Google Scholar 

  • Roberts, N., Eastwood, W.J., Kuzucuoglu, C., Fiorentino, G., and Caracuta, V., Climatic, vegetation and cultural change in the eastern Mediterranean during the mid-Holocene environmental transition, The Holocene, 2011, vol. 21, pp. 147–162.

    Google Scholar 

  • Rosenzweig, C., Karoly, D., Vicarelli, M., Neofotis, P., Wu, Q., Casassa, G., Menzel, A., Root, T.L., Estrella, N., and Seguin, B., Attributing physical and biological impacts to anthropogenic climate change, Nature, 2008, vol. 453, pp. 353–357.

    Article  CAS  PubMed  Google Scholar 

  • Sillero, N., What does ecological modelling model? A proposed classification of ecological niche models based on their underlying methods, Ecol. Model., 2011, vol. 222, pp. 1343–1346.

    Article  Google Scholar 

  • Soons, M.B., Wind dispersal in freshwater wetlands: Knowledge for conservation and restoration, Appl. Veget. Sci., 2006, vol. 9, pp. 271–278.

    Article  Google Scholar 

  • Spalik, K., Wojewódzka, A., and Downie, S., Delimitation of genera in Apiaceae with examples from Scandiceae subtribe Scandicinae, Edinb. J. Bot., 2001a, vol. 58, pp. 331–346.

    Article  Google Scholar 

  • Spalik, K., Wojewódzka, A., and Downie, S.R., The evolution of fruit in Scandiceae subtribe Scandicinae (Apiaceae), Can. J. Bot., 2001b, vol. 79, pp. 1358–1374.

    Google Scholar 

  • Spalik, K., Reduron, J.-P., and Downie, S., The phylogenetic position of Peucedanum sensu lato and allied genera and their placement in tribe Selineae (Apiaceae, subfamily Apioideae), Plant Syst. Evol., 2004, vol. 243, pp. 189–210.

    Article  Google Scholar 

  • Stephan, K.E., Penny, W.D., Moran, R.J., den Ouden, H.E., Daunizeau, J., and Friston, K.J., Ten simple rules for dynamic causal modeling, Neuroimage, 2010, vol. 49, pp. 3099–3109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas, C.D., Cameron, A., Green, R.E., Bakkenes, M., Beaumont, L.J., Collingham, Y.C., Erasmus, B.F., De Siqueira, M.F., Grainger, A., Hannah, L., Extinction risk from climate change, Nature, 2004, vol. 427, pp. 145–148.

    Article  CAS  PubMed  Google Scholar 

  • Thuiller, W., Patterns and uncertainties of species’ range shifts under climate change, Global Change Biol., 2004, vol. 10, pp. 2020–2027.

    Article  Google Scholar 

  • Turner, D. and Williams, D.D., Invertebrate movements within a small stream: Density dependence or compensating for drift?, Int. Rev. Hydrobiol., 2000, vol. 85, pp. 141–156.

    Article  Google Scholar 

  • Warren, D.L., In defense of “niche modeling,” Trends Ecol. Evol., 2012, vol. 27, pp. 497–500.

  • Wisz, M.S., Hijmans, R., Li, J., Peterson, A.T., Graham, C., and Guisan, A., Effects of sample size on the performance of species distribution models, Divers. Distrib., 2008, vol. 14, pp. 763–773.

    Article  Google Scholar 

  • Yang, X.Q., Kushwaha, S.P.S., Saran, S., Xu, J., and Roy, P.S., Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L., in Lesser Himalayan foothills, Ecol. Engin., 2013, vol. 51, pp. 83–87.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Ejtehadi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mazangi, A., Ejtehadi, H., Mirshamsi, O. et al. Effects of climate change on the distribution of endemic Ferula xylorhachis Rech.f. (Apiaceae: Scandiceae) in Iran: Predictions from ecological niche models. Russ J Ecol 47, 349–354 (2016). https://doi.org/10.1134/S1067413616040123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413616040123

Keywords

Navigation