Skip to main content
Log in

Sperm Motility in Bank (Clethrionomys glareolus) and Northern Red-backed Voles (Cl. rutilus) Exposed to Industrial Pollution

  • Published:
Russian Journal of Ecology Aims and scope Submit manuscript

Abstract—The motility of epididymal sperm cells in two closely related rodent species, bank vole (Clethrio-nomys glareolus, n = 71) and northern red-backed vole (Cl. rutilus, n = 52), from the vicinities of two copper smelters in the Middle Urals was studied with regard to the functional group of animals (mature young of the year and overwintered individuals). The proportion of motile cells (Motile) and parameters of their motility (VCL, VSL, VAP, ALH, BCF, STR, LIN) were determined using the MouseTraxx computer-aided sperm analysis (CASA) system (Hamilton Thorne, United States). These parameters proved to be species-specific: sperm velocity (VCL, VSL, VAP) and linearity of movement (LIN) in Cl. glareolus were higher, while head beat cross frequency (BCF) was lower than in Cl. rutilus. Sperm motility in both species showed no dependence on sampling region or functional group. Its parameters in Cl. rutilus did not differ between plots with different pollution levels, while in Cl. glareolus the proportion of motile cells (Motile) and their velocity (VCL) were lower in in animals from the impact than from the background zone. However, pollution accounted for only 8 and 9% of variation in test parameters, respectively; i.e., the parameters of sperm motility in rodents from natural populations have low sensitivity to pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Wijnhoven, S., Leuven, R.S.E.W., van der Velde, G., et al., Heavy-metal concentrations in small mammals from a diffusely polluted floodplain: Importance of species-and location-specific characteristics, Arch. Environ. Contam. Toxicol., 2007, vol. 52, no. 4, pp. 603–613.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lukáň, M., Heavy metals in alpine terrestrial invertebrates, Oecol. Montana, 2009, vol. 18, nos. 1–2, pp. 31–38.

    Google Scholar 

  3. Miska-Schramm, A., Kruczek, M., and Kapusta, J., Effect of copper exposure on reproductive ability in the bank vole (Myodes glareolus), Ecotoxicology, 2014, vol. 23, no. 8, pp. 1546–1554.

    CAS  PubMed  Google Scholar 

  4. Mukhacheva, S.V., Long-term dynamics of small mammal communities in the period of reduction of copper smelter emissions: 1. Composition, abundance, and diversity, Russ. J. Ecol., 2021, vol. 52, no. 1, pp. 84–93.

    CAS  Google Scholar 

  5. Bezel’, V.S., Ekologicheskaya toksikologiya: populyatsionnyi i biotsenoticheskii aspekty (Ecological Toxicology: Population and Biocenotic Aspects), Yekaterinburg: Goshchitskii, 2006.

  6. Van der Horst, G. and Plessis, S.S., Not just the marriage of Figaro, but the marriage of WHO/ESHRE semen analysis criteria with sperm functionality, Adv. Androl. Online, 2017, vol. 4, pp. 6–21.

    Google Scholar 

  7. Amann, R.P. and Waberski, D., Computer-assisted sperm analysis (CASA): Capabilities and potential developments, Theriogenology, 2014, vol. 81, no. 1, pp. 5–17.

    PubMed  Google Scholar 

  8. Chapin, R.E., Sloane, R.A., and Haseman, J.K., The relationships among reproductive endpoints in Swiss mice, using the reproductive assessment by Continuous Breeding database, Fundam. Appl. Toxicol., 1997, vol. 38, no. 2, pp. 129–142.

    CAS  PubMed  Google Scholar 

  9. Yeste, M., Bonet, S., Rodriguez-Gil, J.E., and Del Álamo, M.M.R., Evaluation of sperm motility with CASA-Mot: Which factors may influence our measurements?, Reprod. Fertil. Dev., 2018, vol. 30, no. 6, pp. 789–798.

    PubMed  Google Scholar 

  10. Amann, R.P. and Katz, D.F., Andrology lab corner: Reflections on CASA after 25 years, J. Androl., 2004, vol. 25, no. 3, pp. 317–325.

    PubMed  Google Scholar 

  11. Nobles, C.J., Schisterman, E.F., Ha, S., et al., Ambient air pollution and semen quality, Environ. Res., 2018, vol. 163, pp. 228–236.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Silva, E.F.D.S.J., Missio, D., Martinez, C.S., et al., Mercury at environmental relevant levels affects spermatozoa function and fertility capacity in bovine sperm, J. Toxicol. Environ. Health, 2019, vol. 82, no. 4, pp. 268–278.

    CAS  Google Scholar 

  13. Adamkovicova, M., Toman, R., Cabaj, M., et al., Computer assisted semen analysis of epididymal spermatozoa after an interperitoneal administration of diazinon and cadmium, Sci. Papers Anim. Sci. Biotechnol., 2012, vol. 45, no. 1, pp. 105–110.

    Google Scholar 

  14. Gizejewski, Z., Szafranska, B., Steplewski, Z., et al., Cottonseed feeding delivers sufficient quantities of gossypol as a male deer contraceptive, Eur. J. Wildl. Res., 2008, vol. 54, no. 3, pp. 469–477.

    Google Scholar 

  15. Baberschke, N., Schaefer, F., Meinelt, T., and Kloas, W., Ion-rich potash mining effluents affect sperm motility parameters of European perch, Perca fluviatilis, and impair early development of the common roach, Rutilus rutilus, Sci. Total Environ., 2021, vol. 752, no. 15, art. 141938.

    CAS  PubMed  Google Scholar 

  16. Tannenbaum, L.V., Bazar, M., Hawkins, M.S., et al., Rodent sperm analysis in field-based ecological risk assessment: Pilot study at Ravenna army ammunition plant, Ravenna, Ohio, Environ. Pollut., 2003, vol. 123, no. 1, pp. 21–29.

    CAS  PubMed  Google Scholar 

  17. Tannenbaum, L.V., Thran, B.H., and Williams, K.J., Demonstrating ecological receptor health at contaminated sites with wild rodent sperm parameters, Arch Environ. Contam. Toxicol., 2007, vol. 53, no. 3, pp. 459–465.

    CAS  PubMed  Google Scholar 

  18. Lakoski, K.A., Carron, C.P., Cabot, C.L., and Sa-ling, P.M., Epididymal maturation and the acrosome reaction in mouse sperm: Response to zona pellucida develops coincident with modification of m42 antigen, Biol. Reprod., 1988, vol. 38, no. 1, pp. 221–233.

    CAS  PubMed  Google Scholar 

  19. Seed, J., Chapin, R.E., Clegg, E.D., et al., Methods for assessing sperm motility, morphology, and counts in the rat, rabbit, and dog: A consensus report, Reprod. Toxicol., 1996, vol. 10, no. 3, pp. 237–244.

    CAS  PubMed  Google Scholar 

  20. Monteiro, G.A., Papa, F.O., Zahn, F.S., et al., Cryopreservation and fertility of ejaculated and epididymal stallion sperm, Anim. Reprod. Sci., 2011, vol. 127, nos. 3–4, pp. 197–201.

    CAS  PubMed  Google Scholar 

  21. Li, H., Hung, P., and Suarez, S.S., Ejaculated mouse sperm enter cumulus-oocyte complexes more efficiently in vitro than epididymal sperm, PLoS One, 2015, vol. 10, no. 5, e0127753.

    PubMed  PubMed Central  Google Scholar 

  22. Miska-Schramm, A., Kapusta, J., and Kruczek, M., The effect of aluminum exposure on reproductive ability in the bank vole (Myodes glareolus), Biol. Trace Element Res., 2017, vol. 177, no. 1, pp. 97–106.

    CAS  Google Scholar 

  23. Llobet, J.M., Colomina, M.T., Sirvent, J.J., et al., Reproductive toxicology of aluminum in male mice, Fundamental Appl. Toxicol., 1995, vol. 25, no. 1, pp. 45–51.

    CAS  Google Scholar 

  24. Olenev, G.V., Determining the age of cyclomorphic rodents: Functional ontogenetic determination, ecological aspects, Russ. J. Ecol., 2009, vol. 40, no. 2, pp. 93–104.

    Google Scholar 

  25. Smirnov, G.Yu. and Davydova, Yu.A., Ontogenetic changes in bank vole (Clethrionomys glareolus) sperm morphology, Russ. J. Ecol., 2020, vol. 51, no. 2, pp. 195–198.

    Google Scholar 

  26. Vorobeichik, E.L. and Kaigorodova, S.Yu., Long-term dynamics of heavy metals in the upper horizons of soils in the region of a copper smelter impacts during the period of reduced emission, Euras. Soil Sci., 2017, vol. 50, no. 8, pp. 977–990.]

    CAS  Google Scholar 

  27. Trubina, M.R., Vorobeichik, E.L., Khantemirova, E.V., et al., Dynamics of forest vegetation after the reduction of industrial emissions: Fast recovery or continued degradation?, Dokl. Biol. Sci., 2014, vol. 458, no. 1, pp. 302–305.

    CAS  PubMed  Google Scholar 

  28. Tayama, K., Fujita, H., Takahashi, H., et al., Measuring mouse sperm parameters using a particle counter and sperm quality analyzer: A simple and inexpensive method, Reprod. Toxicol., 2006, vol. 22, no. 1, pp. 92–101.

    CAS  PubMed  Google Scholar 

  29. Kruczek, M., Styrna, J., and Kapusta, J., Reproductive capacity of male bank voles (Myodes glareolus Schreber, 1780): Age-dependent changes in functional activity of epididymal sperm, Belg. J. Zool., 2013, vol. 143, no. 2, pp. 131–141.

    Google Scholar 

  30. Van der Horst, G., Maree, L., and Plessis, S.S., Current perspectives of casa applications in diverse mammalian spermatozoa, Reprod. Fertil. Dev., 2018, vol. 30, no. 6, pp. 875–888.

    PubMed  Google Scholar 

  31. Kotula-Balak, M., Grzmil, P., Chojnacka, K., et al., Do photoperiod and endocrine disruptor 4-tert-octylphenol effect on spermatozoa of bank vole (Clethrionomys glareolus)?, Gen. Comp. Endocrinol., 2014, vol. 201, pp. 21–29.

    CAS  PubMed  Google Scholar 

  32. Tourmente, M., Villar-Moya, P., Varea-Sanchez, M., et al., Performance of rodent spermatozoa over time is enhanced by increased ATP concentrations: The role of sperm competition, Biol. Reprod., 2015, vol. 93, no. 3, pp. 64, 1–13.

  33. Gómez Montoto, L., Sánchez, M.V., Tourmente, M., et al., Sperm competition differentially affects swimming velocity and size of spermatozoa from closely related muroid rodents: Head first, Reproduction, 2011, vol. 142, no. 6, pp. 819–830.

    PubMed  Google Scholar 

  34. Valverde, A., Madrigal, M., Caldeira, C., et al., Effect of frame rate capture frequency on sperm kinematic parameters and subpopulation structure definition in boars, analysed with a CASA-Mot system, Reprod. Domestic Anim., 2019, vol. 54, no. 2, pp. 167–175.

    CAS  Google Scholar 

  35. Pahl, T., McLennan, H.J., Wang, Y., et al., Sperm morphology of the Rattini: Are the interspecific differences due to variation in intensity of intermale sperm competition?, Reprod. Fertil. Dev., 2018, vol. 30, no. 11, pp. 1434–1442.

    PubMed  Google Scholar 

  36. Lüpold, S. and Pitnick, S., Sperm form and function: What do we know about the role of sexual selection?, Reproduction, 2018, vol. 155, no. 5, pp. 229–243.

    Google Scholar 

  37. Rossi, L.F., de la Sancha, N.U., Luaces, J.P., et al., Morphological description and comparison of sperm from eighteen species of cricetid rodents, J. Mammal., 2018, vol. 99, no. 6, pp. 1398–1404.

    Google Scholar 

  38. Ward, P.I., Intraspecific variation in sperm size characters, Heredity, 1998, vol. 80, no. 6, pp. 655–659.

    PubMed  Google Scholar 

  39. Gómez Montoto, L., Sánchez, M.V., Tourmente, M., et al., Sperm competition, sperm numbers and sperm quality in muroid rodents, PLoS One, 2011, vol. 6, no. 3, e18173.

    PubMed  PubMed Central  Google Scholar 

  40. Šandera, M., Albrecht, T., and Stopka, P., Variation in apical hook length reflects the intensity of sperm competition in murine rodents, PLoS One, 2013, vol. 8, no. 7, e68427.

    PubMed  PubMed Central  Google Scholar 

  41. Tourmente, M., Gomendio, M., and Roldan, E.R.S., Sperm competition and the evolution of sperm design in mammals, BMC Evol Biol., 2011, vol. 11, no. 1, pp. 1–10.

    Google Scholar 

  42. Smirnov, G.Yu., Modorov, M.V., and Davydova, Yu.A., Inter- and intraspecific variability of morphometric parameters of rodent spermatozoa, Zoomorphology, 2021, vol. 140, pp. 405–418. https://doi.org/10.1007/s00435-021-00531-7

    Article  Google Scholar 

  43. Gromov, V.S. and Osadchuk, L.V., Parental care and testosterone secretion in forest rodent males: Sensitization and androgenic stimulation of parental behavior, Biol. Bull., 2015, vol. 42, no. 4, pp. 354–360.

    CAS  Google Scholar 

  44. Ambaryan, A.V., Mal’tsev, A.N., and Kotenkova, E.V., Interrelation between characteristics of sequel behavior and parameters of sperm competitiveness in taxa of the Mus musculus sensu lato superspecies complex, Zh. Obshch. Biol., 2015, vol. 76, no. 3, pp. 212–224.

    CAS  PubMed  Google Scholar 

  45. Tourmente, M., Zarka-Trigo, D., and Roldan, E.R.S., Is the hook of muroid rodent’s sperm related to sperm train formation?, J. Evol. Biol., 2016, vol. 29, no. 6, pp. 1168–1177.

    CAS  PubMed  Google Scholar 

  46. Lüpold, S., de Boer, R.A., Evans, J.P., et al., How sperm competition shapes the evolution of testes and sperm: A meta-analysis, Philos. Trans. R. Soc. Lond. B, vol. 375, no. 1813, pp. 1–10.

  47. Matsumoto, A.M., Karpas, A.E., and Bremner, W.J., Chronic human chorionic gonadotropin administration in normal men: Evidence that follicle-stimulating hormone is necessary for the maintenance of qualitatively normal spermatogenesis in man, J. Clin. Endocrinol. Metab., 1986, vol. 62, no. 6, pp. 1184–1192.

    CAS  PubMed  Google Scholar 

  48. Osipova, O.V. and Soktin, A.A., Experimental simulation of ancient hybridization between bank and red voles, Dokl. Biol. Sci., 2008, vol. 420, pp. 169–171.

    Google Scholar 

  49. Abramson, N.I., Rodchenkova, E.N., Fokin, M.V., et al., Recent and ancient introgression of mitochondrial DNA between the red (Clethrionomys rutilus) and bank (Clethrionomys glareolus) voles (Rodentia, Cricetidae), Dokl. Biol. Sci., 2009, vol. 425, pp. 147–150.

    Google Scholar 

  50. Johnson, S.L., Dunleavy, J., Gemmell, N.J., and Nakagawa, S., Consistent age-dependent declines in human semen quality: A systematic review and meta-analysis, Ageing Res. Rev., 2015, vol. 19, pp. 22–33.

    PubMed  Google Scholar 

  51. Ntemka, A., Kiossis, E., Boscos, C., et al., Impact of old age and season on Chios ram semen quality, Small Ruminant Res., 2019, vol. 178, pp. 15–17.

    Google Scholar 

  52. Syntin, P. and Robaire, B., Sperm structural and motility changes during aging in the brown Norway rat, J. Androl., 2001, vol. 22, no. 2, pp. 235–244.

    CAS  PubMed  Google Scholar 

  53. Wolf, K.N., Wildt, D.E., Vargas, A., et al., Age-dependent changes in sperm production, semen quality, and testicular volume in the black-footed ferret (Mustela nigripes), Biol. Reprod., 2000, vol. 63, no. 1, pp. 179–187.

    CAS  PubMed  Google Scholar 

  54. Crosier, A.E., Marker, L., Howard, J., et al., Ejaculate traits in the Namibian cheetah (Acinonyx jubatus): Influence of age, season and captivity, Reprod. Fertil. Dev., 2007, vol. 19, no. 2, pp. 370–382.

    PubMed  Google Scholar 

  55. Martínez, A.F., Martínez-Pastor, F., Alvarez, M., et al., Sperm parameters on Iberian red deer: Electroejaculation and post-mortem collection, Theriogenology, 2008, vol. 70, no. 2, pp. 216–226.

    PubMed  Google Scholar 

  56. Kozdrowski, R. and Dubiel, A., The effect of season on the properties of wild boar (Sus scrofa L.) semen, Anim. Reprod. Sci., 2004, vol. 80, nos. 3–4, pp. 281–289.

    CAS  PubMed  Google Scholar 

  57. Novikov E.A., Moshkin M.P. Role of stress in modification of genetic programs, Usp. Sovrem. Biol., 2009, vol. 129, no. 3, pp. 227–238.

    Google Scholar 

  58. Osadchuk, L.V. and Kleshchev, M.A., Interlinear differences in parameters of spermatogenesis in inbred mice, Morfologiya, 2016, vol. 149, no. 2, pp. 54–57.

    Google Scholar 

  59. Smirnov, G.Yu. and Davydova, Yu.A., Effect of industrial pollution of the environment on the frequency of abnormal spermatozoa in the bank vole, Myodes glareolus, Russ. J. Ecol., 2018, vol. 49, no. 5, pp. 459–463.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

The author is grateful to E.L. Vorobeichik for discussion of the results and to Yu.A. Davydova for her unerring help and support.

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-34-90004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Yu. Smirnov.

Ethics declarations

Statement on the welfare of animals. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Conflict of interests. The author declares that he has no conflict of interest.

Additional information

Translated by N. Gorgolyuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, G.Y. Sperm Motility in Bank (Clethrionomys glareolus) and Northern Red-backed Voles (Cl. rutilus) Exposed to Industrial Pollution. Russ J Ecol 53, 48–57 (2022). https://doi.org/10.1134/S1067413622010106

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1067413622010106

Keywords:

Navigation