Skip to main content
Log in

EcoRII Restriction Endonuclease Forms Specific Contacts to the Bases of Its Target Sequence Flipped from DNA in a Transition Complex with Photoactivatable Substrates

  • Published:
Russian Journal of Bioorganic Chemistry Aims and scope Submit manuscript

Abstract

The photoactivatable modified oligonucleotides were used to investigate direct contacts formed by the type IIE EcoRII restriction endonuclease and the T/A bases of its recognition site (5'-CCT/AGG). EcoRII dimer consists of a central catalytic core, made of two C-terminal endonuclease-like domains (EcoRII-C) from different subunits, and two N-terminal effector DNA binding domains (EcoRII-N). According to co-crystal structure of isolated EcoRII-C with DNA catalytic dimer EcoRII-C flips nucleotides of the central T/A pair into the enzyme binding pockets. Нere, photocross-linking technique was used to investigate the direct contacts formed by extrahelical T/A bases in the protein pockets of full-length EcoRII within the pre-reactive EcoRII–DNA complex obtained in the presence of Ca2+ in solution. Photoreactive zero-length agent 5-iodo-2'-deoxyuridine (IdU) was introduced as single substituent into the central T/A position of EcoRII recognition site or into the flanking nucleotide sequences of 14-mer DNA substrate. The substitution of only dT or dA residues in EcoRII recognition site resulted in formation of photocross-links upon irradiation only in the presence of Ca2+. Proteolytic digestion of the enzyme-oligonucleotide conjugates followed by MALDI-MS analysis have allowed to identify the 224VEYD227 EcoRII region involved in the formation of the cross-links. This region belongs to the central part of H-10 α-helix. Y226 residue was suggested to form cross-link with T or A bases of EcoRII site replaced by IdU within the pre-reactive complex. The flipped base pair protein pockets of EcoRII seem to accommodate equally well both A and T bases of the DNA substrate. Altogether, IdU-containing photoactivatable DNA substrates have allowed to trap the flipped bases in complex with full-length EcoRII before DNA cleavage in the solution and to identify direct enzyme–DNA contacts important for high specificity of EcoRII for the Т/A nucleotides providing a highly specific cleavage reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Pingoud, A. and Jeltsch, A., Nucleic Acids Res., 2001, vol. 29, pp. 3705–3727. https://doi.org/10.1093/nar/29.18.3705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Roberts, R.J., Belfort, M., Bestor, T., et al., Nucleic Acids Res., 2003, vol. 31, pp. 1805–1812. https://doi.org/10.1093/nar/gkg274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mücke, M., Krüger, D.H., and Reuter, M., Nucleic Acids Res., 2003, vol. 31, pp. 6079–6084. https://doi.org/10.1093/nar/gkg836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kirsanova, O.V., Baskunov, V.B., and Gromova, E.S., Mol. Biol. (Moscow), 2004, vol. 38, pp. 752–764. https://doi.org/10.1023/B:MBIL.0000043944.45429.aa

    Article  CAS  Google Scholar 

  5. Petrauskene, O.V., Karpova, E.A., Gromova, E.S., and Guschlbauer, W., Biochem. Biophys. Res. Commun., 1994, vol. 198, pp. 885–890. https://doi.org/10.1006/bbrc.1994.1126

    Article  CAS  PubMed  Google Scholar 

  6. Tamulaitis, G., Mücke, M., and Siksnys, V., FEBS Lett., 2006, vol. 580, pp. 1665–1671. https://doi.org/10.1016/j.febslet.2006.02.010

    Article  CAS  PubMed  Google Scholar 

  7. Tamulaitis, G., Sasnauskas, G., Mücke, M., and Siksnys, V., J. Mol. Biol., 2006, vol. 358, pp. 406–419. https://doi.org/10.1016/j.jmb.2006.02.024

    Article  CAS  PubMed  Google Scholar 

  8. Shlyakhtenko, L.S., Gilmore, J., Portillo, A., Tamulaitis, G., Siksnys, V., and Lyubchenko, Y.L., Biochemistry, 2007, vol. 46, pp. 11128–11136. https://doi.org/10.1021/bi701123u

    Article  CAS  PubMed  Google Scholar 

  9. Zhou, X.E., Wang, Y., Reuter, M., Mücke, M., Krüger, D.H., Meehan E.J., and Chen, L., J. Mol. Biol., 2004, vol. 335, pp. 307–319. https://doi.org/10.1016/j.jmb.2003.10.030

    Article  CAS  PubMed  Google Scholar 

  10. Golovenko, D., Manakova, E., Tamulaitiene, G., Grazulis, S., and Siksnys, V., Nucleic Acids Res., 2009, vol. 37, pp. 6613–6624. https://doi.org/10.1093/nar/gkp699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Klimasauskas, S., Kumar, S., Roberts, R.J., and Cheng, X.D., Cell, 1994, vol. 76, pp. 357–369. https://doi.org/10.1016/0092-8674(94)90342-5

    Article  CAS  PubMed  Google Scholar 

  12. Reinisch, K.M., Chen, L., Verdine, G.L., and Lipscomb, W.N., Cbabell., 1995, vol. 82, pp. 143–153. https://doi.org/10.1016/0092-8674(95)90060-8

    Article  CAS  Google Scholar 

  13. Banerjee, A., Yang, W., Karplus, M., and Verdine, G.L., Nature, 2005, vol. 434, pp. 612–618. https://doi.org/10.1038/nature03458

    Article  CAS  PubMed  Google Scholar 

  14. Tamulaitis, G., Zaremba, M., Szczepanowski, R.H., Bochtler, M., and Siksnys, V., Nucleic Acids Res., 2007, vol. 35, pp. 4792–4799. https://doi.org/10.1093/nar/gkm513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Neely, R.K., Tamulaitis, G., Chen, K., Kubala, M., Siksnys, V., and Jones, A.C., Nucleic Acids Res., 2009, vol. 37, pp. 6859–6870. https://doi.org/10.1093/nar/gkp688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Babkina, O.V., Chutko, C.A., Shashkov, A.A., Dzhidzhoev, M.S., Eritja, R.I., and Gromova, E.S., Photochem. Photobiol. Sci., 2002, vol. 1, pp. 636–640. https://doi.org/10.1039/B202028A

    Article  CAS  PubMed  Google Scholar 

  17. Mücke, M., Pingoud, V., Grelle, G., Kraft, R., Krüger, D.H., and Reuter, M., J. Biol. Chem., 2002, vol. 277, pp. 14288–14293. https://doi.org/10.1074/jbc.M109311200

    Article  CAS  PubMed  Google Scholar 

  18. Tamulaitiene, G., Manakova, E., Jovaisaite, V., Tamulaitis, G., Grazulis, S., Bochtler, M., and Siksnys, V., Nucleic Acids Res., 2019, vol. 48, pp. 997–1010. https://doi.org/10.1093/nar/gky1137

    Article  CAS  Google Scholar 

  19. Bochtler, M., Szczepanowski, R.H., Tamulaitis, G., Grazulis, S., Czapinska, H., Manakova, E., and Siksnys, V., EMBO J., 2006, vol. 25, pp. 2219–2229. https://doi.org/10.1038/sj.emboj.7601096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Tamulaitis, G., Zaremba, M., Szczepanowski, R.H., Bochtler, M., and Siksnys, V., Nucleic Acids Res., 2008, vol. 36, pp. 6101–6108. https://doi.org/10.1093/nar/gkn621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Babkina, O.V., Evstaf’eva, A.G., Chichkova, N.V., Vartapetian, A.B., Müller, S., Baskunov, V.B., Piatrauskene, O.V., Kochetkov, S.N., and Gromova E.S., Mol. Biol. (Moscow), 2000, vol. 34, pp. 913–920. https://doi.org/10.1023/A:1026688028427

    Article  CAS  Google Scholar 

  22. Ferrer, E., Wiersma, M., Kazimierczak, B., Müller, C.W., and Eritja, R., Bioconjug. Chem., 1997, vol. 8, pp. 757–761. https://doi.org/10.1021/bc970042l

    Article  CAS  PubMed  Google Scholar 

  23. Petrauskene, O.V., Babkina, O.V., Tashlitsky, V.N., Kazankov, G.M., and Gromova, E.S., FEBS Lett., 1998, vol., 425, pp. 29–34. https://doi.org/10.1016/s0014-5793(98)00184-7

    Article  CAS  PubMed  Google Scholar 

  24. Dzhidzhoev, M.S., Platonenko, V.T., and Popov, V.K., Moscow Univ. Phys. Bull., 1984, vol. 39, pp. 118–120.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to T. Zatsepin for recording of MALDI mass spectra.

Funding

This work was supported by the Russian Foundation for Fundamental Investigations under Grant no. 19-04-00533.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Gromova.

Ethics declarations

COMPLIANCE WITH ETHICAL STANDARDS

This article does not contain any studies involving human participants or animals performed by any of the authors.

Conflict of Interests

The authors declare no conflict of interest.

Additional information

Abbreviations: DTT, dithiothreitol; IBA, o-iodosobenzoic acid; IdC, 5-iodo-2'-deoxycytidine; IdU, 5-iodo-2'-deoxyuridine; NCS, N-chlorosuccinimide; NTCBA, 2-nitro-5-thiocyanobenzoic acid; ON, oligodeoxynucleotide; PAGE, polyacrylamide gel electrophoresis; SDS, sodium dodecylsulfate; Tris, tris(hydroxymethyl)aminomethane.

Corresponding author: phone: +7 (495) 939-31-44; fax: +7 (495) 939-31-81.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirsanova, O.V., Subach, F.V., Loiko, A.G. et al. EcoRII Restriction Endonuclease Forms Specific Contacts to the Bases of Its Target Sequence Flipped from DNA in a Transition Complex with Photoactivatable Substrates. Russ J Bioorg Chem 47, 367–375 (2021). https://doi.org/10.1134/S106816202102014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106816202102014X

Keywords:

Navigation