Skip to main content
Log in

The Influence of Fracturing of the Rocks and Model Materials on P-Wave Propagation Velocity: Experimental Studies

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

It is shown that rigidity of the medium is a more strain-sensitive parameter than rock density for the elastic wave velocity with the increase in the depth. For assessing the effect of intergrain and fracture porosity, the ratio (in percent) of the measured P-wave velocity in the rock to the velocity in the solid matrix—the “normalized velocity”—is used. The results of the experimental studies have shown that the effect of fractures (faults, rock joints) and intergrain porosity on the propagation velocity of the elastic P-waves is different. The increase in fracture porosity more strongly reduces the P-wave velocity than the increase in intergrain porosity of identical magnitude. It is shown that the propagation velocity of the elastic P-waves in the rocks and model materials depends on the presence and number of cracks (fractures). The possibility of selective assessment of intergrain and fracture porosity in reservoir rocks of the oil and gas fields during their development is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Altindağ, R. and Güney, A., Evolution of the relationship P-wave velocity and joint density, Proc. 19th Int. Mining Cong. and Fair of Turkey, IMCET 2005, Izmit, 2005, pp. 101–106.

  2. Anderson, D.L., Minster, B., and Cole, D., The effect of oriented cracks on seismic velocities, J. Geophys. Res., vol. 79, 1974, pp. 4011–4015.

    Article  Google Scholar 

  3. Bayuk, I.O. and Ryzhkov, V.I., Determination of crack and pore parameters of carbonate reservoirs from full-waveform acoustic logging data, Tekhnol. Seismorazved., 2010, no. 3, pp. 32–42.

  4. El Azhari, H. and El Hassani, I., Effect of the number and orientation of fractures on the P-wave velocity diminution: application on the building stones of the Rabat area (Morocco), Geomaterials, 2013, no. 3, pp. 71–81.

  5. Gassman, F., Elastic waves through a packing of spheres, Geophysics, 1951, vol. 16, pp. 673–685.

    Article  Google Scholar 

  6. In’kov, V.N., Cherepetskaya, E.B., Shkuratnik, V.L., Karabutov, A.A., and Makarov, V.A., Ultrasonic laser spectroscopy of mechanic-acoustic nonlinearity of cracked rocks, J. Appl. Mech. Tech. Phys., 2005, vol. 46, no. 3, pp. 452–457.

    Article  Google Scholar 

  7. Kahraman, S.A., Correlation between P-way velocity, number of joints and Schmidt hammer rebound number, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 2001, vol. 38, no. 5, pp. 729–733.

    Article  Google Scholar 

  8. Kurtuluş, C., Üçkardeş, M., Sari, U., and Güner, Ş.O., Experimental studies in wave propagation across a jointed rock mass, Bull. Eng. Geol. Environ., 2012, vol. 71, pp.231–234. https://doi.org/10.1007/s10064-011-0392-5

    Article  Google Scholar 

  9. Kuzmin, Yu.O., Sovremennaya geodinamika i otsenka geodinamicheskogo riska pri nedropol’zovanii (Recent Geodynamics and Geodynamic Risk Assessment at Subsurface Management), Moscow: Agentstvo Ekonomicheskikh Novostei, 1999.

  10. Kuzmin, Yu. O., Recent geodynamics of the faults and paradoxes of the rates of deformation, Izv.,Phys. Solid Earth, 2013, vol. 49, no. 5, pp. 626–642.

    Article  Google Scholar 

  11. Kuzmin, Yu. O., Recent geodynamics of a fault system, Izv.,Phys. Solid Earth, 2015, vol. 51, no. 4, pp. 480–485.

    Article  Google Scholar 

  12. Kuzmin, Yu. O., Induced deformations of fault zones, Izv.,Phys. Solid Earth, 2019, vol. 55, no. 5, pp. 753–765.

    Article  Google Scholar 

  13. Kuzmin, Yu.O. and Zhukov, V.S., Sovremennaya geodinamika i variatsii fizicheskikh svoystv gornykh porod (Recent Geodynamics and Variations in the Physical Properties of Rocks), Moscow: MGGU, 2004.

  14. Mavko, G., Mukerji, T., and Dvorkin, J., The Rock Physics Handbook: Tools for Seismic Analysis in Porous Media, 2nd ed., Cambridge: Cambridge Univ. Press, 2009.

    Book  Google Scholar 

  15. NDT Education Research Center Iowa State University 2001–2014, Acoustic properties for ceramics, crystals and minerals. http://www.ndt-ed.org. Cited January 27, 2020.

  16. Nur, A., Effect of stress on velocity anisotropy in rocks with cracks, J. Geophys. Res., 1971, vol. 76, pp. 2022–2034.

    Article  Google Scholar 

  17. Nur, A. and Simmons, G., Stress-induced velocity anisotropy in rocks: an experimental study, J. Geophys. Res., 1969, vol. 74, no. 27, pp. 6667–6674.

    Article  Google Scholar 

  18. Plona, T.J., Observation of second bulk compression wave in porous medium at ultrasonic frequencies, Appl. Phys. Lett., vol. 36, no. 4, pp. 259–261.

  19. Riznichenko, Yu.V., On the propagation of seismic waves in discrete and heterogeneous media, Izv. Akad. Nauk SSSR, Ser. Geograf. Geofiz., 1949, no. 2, pp. 115–128.

  20. Ryzhov, A.E., Zhukov, V.S., Iselidze, O.V., Dakhnov, A.V., and Semenov, E.O., Dynamics of the changes in the physical properties of productive rock samples during the development of oil and gas fields, in Razrabotka mestorozhdeniy uglevodorodov (Development of Hydrocarbon Deposits), Moscow: OOO VNIIGAZ, 2008, pp. 154–168.

  21. Sassa, K. and Watanabe, T., Velocity and amplitude of P-waves transmitted trough fractured zones composed of multiple thin low-velocity layers, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 1995, vol. 32, no. 4, pp. 313–324.

    Google Scholar 

  22. Sheriff, R.E. and Gelard, L.P., Exploration Seismology, vol. 1 and 2, Cambridge: Cambridge Univ. Press, 1982 and 1983.

  23. Tiab, D. and Donaldson, E.C., Petrophysics: Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, 2nd ed., Oxford: Gulf, 2004.

    Google Scholar 

  24. Tourenq, C., Fourmaintraux, D., and Denis, A., Propagation des ondes et discontinuités des roches, in Mecanique Des Roches Appliquee Aux Problemes D’exploration Et De Production Petrolieres, Maury, V. and Fourmaintraux, D., Eds., Boussens: Elf Aquitaine, 1993.

  25. Walsh, J.B. and Brace, W.F., Cracks and pores in rocks, Proc. 1st Congr. Int. Soc. Rock Mech., Lisbon, 1966, vol. 3, Lisbon: Lab. Nac. Engenharia Civil, 1967, Theme 3, pp. 643–646.

  26. Walsh, J.B., The effect of cracks on compressibility of rocks, J. Geophys. Res., 1965, vol. 70, no. 2, pp. 381–389.

    Article  Google Scholar 

  27. Wyllie, M.R.J., Gregory, A.R., and Gardner, L.W., Elastic wave velocities in heterogeneous and porous media, Geophysics, 1956, vol. 21, no. 1, pp. 41–70.

    Article  Google Scholar 

  28. Young, R.P., Hill, T.T., Bryan, I.R., and Middleton, R., Seismic spectroscopy in fracture characterization, Q. J. Eng. Geol., 1985, vol. 18, no. 4, pp. 459–479.

    Article  Google Scholar 

  29. Zhukov, V.S., Fracture formation factor assessment from propagation velocity of elastic waves, in Vesti Gazovoy Nauki: Problemy resursnogo obespecheniya gazodobyvayushchikh rayonov Rossii. Sbornik nauchnykh statei (News of Gas Science: Russian Gas-Producing Regions Resource Provision Problem until 2030. Collection of Papers), Moscow: OOO Gazprom VNIIGAZ, 2012, no. 1, pp. 148–152.

  30. Zhukov, V.S. and Kuzmin, Yu.O., Physical modeling of recent geodynamical processes, Gorn. Inf.-Analit. Byul., 2003, no. 5, pp. 71–77.

  31. Zhukov, V.S. and Lyugai, D.V., Opredelenie fil’tratsionno-emkostnykh i uprugikh svoistv i elektricheskikh parametrov obraztsov gornykh porod pri modelirovanii plastovykh uslovii: Uchebno-metodicheskoe posobie (Determination of Poroperm and Elastic Properties and Electrical Parameters of Rock Samples in Reservoir Conditions Modeling: A Study Guide), Moscow: OOO Gazprom VNIIGAZ, RGU NiG im. Gubkina, 2016.

  32. Zhukov, V.S., Salov, B.G., and Kuzmin, Yu.O., Deformations and crack formation in rock samples under long-term exposure to constant compressive stresses, in Model’nye i naturnye issledovaniya ochagov zemletryasenii (Model and In-Situ Studies of Earthquake Sources), Moscow: Nauka, 1991, pp. 152–162.

  33. Zhukov, V.S., Kuzmin, Yu.O., and Poloudin, G.A., Assessment of the Earth’s surface subsidence processes during the development of gas fields: case study of the North Stavropol field, Geol. Geofiz. Razrab. Neft. Gazov. Mestorozhd., 2002, no. 7, pp. 54–57.

  34. Zhukov, V.S., Motorygin, V.V., and Churikov, Yu.M., Modification of porous space structure in reservoirs of Dagi horizon at transition from atmospheric to in-situ conditions, in Vesti Gazovoy Nauki: Problemy resursnogo obespecheniya gazodobyvayushchikh rayonov Rossii. Sbornik nauchnykh statei (News of Gas Science: Russian Gas-Producing Regions Resource Provision Problem until 2030, Collection of Papers), Moscow: Gazprom VNIIGAZ, 2017, no. 3 (31), pp. 238–246.

  35. Zhukov, V.S., Semenov, E.O., and Kuzmin, Yu.O., Dynamics of physical properties of reservoirs at development of oil and gas fields, in Vesti Gazovoy Nauki: Aktual’nyye voprosy issledovaniy plastovykh sistem mestorozhdeniy uglevodorodov. Sbornik nauchnykh statei (News of Gas Science: Topical Issues in the Research of Bedded Hydrocarbon Systems. Collection of Papers), Moscow: Gazprom VNIIGAZ, 2018, no. 5 (37), pp. 238–246.

  36. Zoback, M.D., Reservoir Geomechanics, Cambridge: Cambridge Univ. Press, 2007.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. O. Kuzmin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, V.S., Kuzmin, Y.O. The Influence of Fracturing of the Rocks and Model Materials on P-Wave Propagation Velocity: Experimental Studies. Izv., Phys. Solid Earth 56, 470–480 (2020). https://doi.org/10.1134/S1069351320040102

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351320040102

Keywords:

Navigation