Skip to main content
Log in

Acoustic, Magnetic, and Electric Effects of Stromboli Volcano Eruption, Italy, in July–August 2019

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The results of instrumental observations of acoustic oscillations, geomagnetic variations, and variations in the electric field and atmospheric electric current during the activation of the Stromboli volcano, Italy, in 2019 are presented. Separately considered are the periods of explosive activity and the interval marked by intense emission of incandescent ash-and-gas mixture. It is shown that volcanic activity is accompanied by acoustic signal generation at the explosive stages of the eruption and by the emergence of internal gravity waves at the stage of intense effusion of ash and gas (“purging”). The characteristic variations in the Earth’s magnetic field and in the electrical parameters of the atmospheric surface layer are observed during different periods of volcanic eruption. The presented results expand the existing database and can be useful for improving the existing models and developing the new models describing the effect of volcanic activity on the geophysical environment as well as for verifying these models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

Notes

  1. https://geocenter.info/new/izverzhenie-vulkana-stromboli-ijul

  2. https://www.volcanodiscovery.com/stromboli/eruptions/3july2019-explosion.html

  3. https://ria.ru/20190830/1558059711.html

  4. Coordinate axes directions: the x- and y-axes are oriented in the N–S and E–W directions, respectively, and the z-axis points vertically downwards.

  5. Oscillations with periods of 6–15 min are identified with the fundamental mode of the internal gravity waves (IGW) at the cushion height of the convective region of the heating products above the source, i.e., by the oscillations about the level of thermal equilibrium. This mechanism of IGW generation by the penetrative convection is implemented in the presence of a highly unstable (overheated) layer of the atmosphere (Gossard and Hook, 1975).

REFERENCES

  1. Adushkin, V.V. and Firstov, P.P., Peculiarities of explosive processes of volcanic eruptions and their manifestation in wave disturbances in the atmosphere, in Ekstremal’nye prirodnye yavleniya i katastrofy, tom 2: Geologiya urana, geoekologiya, glyatsiologiya (Extreme Environmental Hazards and Catastrophes, vol. 2: Uranium Geology, Geoecology, Glaciology), Kotlyakov, V.M., Ed., Moscow: IFZ RAN, 2011, pp. 264–278.

  2. Adushkin, V.V., Gostintsev, Yu.A., and Firstov, P.P., On the origin of air waves at strong explosive eruptions, Vulkanol. Seismol., 1984, no. 5, pp. 3–11.

  3. Adushkin, V.V., Ovchinnikov, V.M., Sanina, I.A., and Riznichenko, O.Yu., Mikhnevo: from seismic station no. 1 to a modern geophysical observatory, Izv. Phys. Solid Earth, 2016, vol. 52, no. 1, pp. 105–116.

    Article  Google Scholar 

  4. Adushkin, V.V., Soloviev, S.P., and Spivak, A.A., Elektricheskie polya tekhnogennykh i prirodnykh protsessov (Electrical Fields of Manmade and Natural Processes), Moscow: GEOS, 2018.

  5. Adushkin, V.V., Rybnov, Yu.S., Spivak, A.A., and Kharlamov, V.A., Relationship between the parameters of infrasound waves and the energy of the source, Izv. Phys. Solid Earth, 2019, vol. 55, no. 6, pp. 897–906.

    Article  Google Scholar 

  6. Baryshev, V.I., Vaag, L.L., Gavrilov, B.G., and Poletaev, A.S., Surface vertical atmospheric current sensor, in Problemy vzaimodeistvuyushchikh geosfer: Sbornik nauchnykh trudov Inst. Din. Geosfer RAN (Problems of Interacting Geospheres: Collection of Papers Inst. Geosphere Dynamics RAS), Turuntaev, S.B., Ed., Moscow: GEOS, 2009, pp. 358–364.

  7. Chernogor, L.F., Dynamics of the convective rise of thermals in the atmosphere, Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 6, pp. 528–535.

    Article  Google Scholar 

  8. Degterev, A.V. and Chibisova, M.V., The eruption of Raikoke Volcano in June of 2019 (Raikoke Island, central Kuril islands), Geosist.Perekhodnykh Zon, 2019, vol. 3, no. 3, pp. 304–317.

    Google Scholar 

  9. Firstov, P.P., Wave disturbances in the atmosphere as a source of information on dynamics of volcanic eruptions, EOS, Trans. Am. Geophys. Union, 1996, vol. 318, no. 3, Paper ID F 813.

  10. Firstov, P.P., Wave perturbation in the atmosphere as a method of remote monitoring of volcanic eruptions, Proc. Int. Volcanol. Congr. JAVEI, Theme 7, Ankara, 1994, p. 675.

  11. Firstov, P.P., Adushkin, V.V., and Storcheus, A.V., Air shock waves recorded during the Great Tolbachik eruption in September 1975, Dokl. Akad. Nauk SSSR, 1978, vol. 259, no. 5, pp. 1078–1081.

    Google Scholar 

  12. Firstov P.P., Akbashev R.R., Cherneva N.V., Shevtsov B.M., and Holzworth, R., Atmospheric electric effects during the explosion of Shiveluch volcano on November 16, 2014, Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 1, pp. 24–31.

    Article  Google Scholar 

  13. Firstov, P.P., Akbashev, R.R., Zharinov, N.A., Maksimov, A.P., Manevich, T.M., and Mel’nikov, D.V., Electrification of eruptive plumes discharged by Shiveluch volcano in relation to the character of the responsible explosion, J. Volcanol. Seismol., 2019, vol. 13, no. 3, pp. 172–184.

    Article  Google Scholar 

  14. Gossard, E.A. and Hook, W.H., Waves in the Atmosphere, Amsterdam: Elsevier, 1975.

    Google Scholar 

  15. Gostintsev, Yu.A. and Shatskikh, Yu.V., Mechanism of longwave acoustic perturbation generation in the atmosphere by a floating cloud of explosion products, Combust., Explos. Shock Waves, 1987, no. 2, pp. 203–209.

  16. Gostintsev, Yu.A., Ivanov, E.A., Anisimov, S.V., Pedanov, M.V., Kulichkov, S.N., Mordukhovich, M.I., Kopylov, N.P., Shatskikh, Yu.V., and Rusakov, N.M., On the mechanism of infrasonic wave generation in the atmosphere due to large fires, Proc. Acad. Sci. USSR, 1985, vol. 283, no. 3, pp. 573–576.

    Google Scholar 

  17. Gostintsev, Yu.A., Ivanov, E.A., Kopylov, N.P., and Shatskikh, Yu.V., Wave disturbances of the atmosphere at heavy fires, Fiz. Goreniya Vzryva, 1983, vol. 19, no. 4, pp. 62–64.

    Google Scholar 

  18. James, M.R., Lane, S.J., and Gilbert J.S., Volcanic plume electrification: experimental investigation of a fracture-charging mechanism, J. Geophys. Res.: Solid Earth, 2000, vol. 105, no. B7, pp. 16641–16649.

    Article  Google Scholar 

  19. Johnston, M.J.S., Review of electric and magnetic fields accompanying seismic and volcanic activity, Surv. Geophys., 1997, vol. 18, pp. 441–475.

    Article  Google Scholar 

  20. Kovaleva, I.Kh., Kovalev, A.T., Popel’, S.I., and Popova, O.P., Electromagnetic effects generated in the Earth’s ionosphere by meteoroid falls, in Dinamicheskie protsessy v geosferakh: Sbornik nauchnykh trudov Inst. Din. Geosfer RAN (Dynamic Processes in Geospheres: Collection of Papers Inst. Geosphere Dynamics RAS), vol. 4, Turuntaev, S.B., Ed., Moscow: GEOS, 2013, pp. 41–50.

    Google Scholar 

  21. Kulichkov, S.N., and Bush, G.A., Rapid variations in infrasonic signals at long distances from one-type explosions, Izv., Atmos. Ocean. Phys., 2001, vol. 37, no. 3, pp. 306–313.

    Google Scholar 

  22. Kulichkov, S.N., Avilov, K.V., Bush, G.A., Popov, O.E., Raspopov, O.M., Baryshnikov, A.K., Re Velle, D.O., and Whitaker, R.W., On anomalously fast infrasonic arrivals at long distances

  23. Kunitsyn, V.E. and Shalimov, S.L., Ultralow-frequency variations of the magnetic field during the propagation of acoustic-gravitaty waves in the ionosphere, Moscow Univ. Phys. Bull., 2011, vol. 66, no.5, pp. 485–488.

    Article  Google Scholar 

  24. Lane, S.J. and Gilbert, J.S., Electric potential gradient changes during explosive activity at Sakurajima volcano, Japan, Bull. Volcanol., 1992, vol. 54, no. 7, pp. 590–594.

    Article  Google Scholar 

  25. Mather, T.A. and Harison, R.G., Electrification of volcanic plumes, Surv. Geophys., 2006, vol. 27, no. 4, pp. 387–432.

    Article  Google Scholar 

  26. Murayama, N., Propagation of atmospheric pressure waves produced by the explosion of volcano Bezymianny of March 30, 1956 and transport of the volcanic ashes, Quart. J. Seismol., 1969, vol. 33, no. 1, pp. 1–11.

    Google Scholar 

  27. Orlov, V.V. and Uralov, A.M., Response of the atmosphere to a weak ground explosion, Izv. Akad. Nauk SSSR,Fiz. Atmos. Okeana, 1984, vol. 20, no. 6, pp. 476–484.

    Google Scholar 

  28. Pasechnik, I.P., Seismic and air waves emerged at the eruption of Bezymyanny Volcano on March 30, 1956, Izv. Akad. Nauk SSSR, Ser. Geofiz., 1958, pp. 1121–1126.

  29. Reed, J.W., Air pressure waves from Mt. St. Helens eruption, EOS, Trans. Am. Geophys. Union, 1980, vol. 61, no. 46, p. 1136.

    Google Scholar 

  30. Riabova, S.A. and Spivak, A.A., Geomagnitnye effekty v pripoverkhnostnoi zone Zemli (Geomagnetic Effects in the Near-Surface Zone of the Earth), Moscow: Grafiteks, 2016.

  31. Rulenko, O.P., Electrical processes in the gas-and-steam clouds of the Karymsky Volcano, Dokl. Akad. Nauk SSSR, 1979, vol. 245, no. 5, pp. 1083–1086.

    Google Scholar 

  32. Rulenko, O.P., Electrization of volcanic clouds, Vulkanol. Seismol., 1985, no. 2, pp. 71–83.

  33. Sorokin, V.M. and Fedorovich, G.V., Fizika medlennykh MGD-voln v ionosfernoi plazme (Physics of Slow MHD Waves in Ionospheric Plasma), Moscow: Energoizdat, 1982.

  34. Spivak, A.A., Kishkina, S.B., Loktev, D.N., Rybnov, Yu.S., Soloviev, S.P., Kharlamov, V.A., Instruments and techniques for megapolis geophysical monitoring and their application in the Moscow IDG RAS geophysical monitoring center, Seism.Prib., 2016, vol. 52, no. 2, pp. 65–78.

    Google Scholar 

  35. Stewart, K.H., Air waves from a volcanic explosion, Meteorol. Mag., 1959, vol. 88, pp. 1–3.

    Google Scholar 

  36. Storcheus, A.V., Firstov, P.P., and Ozerov, A.Yu., A possible mechanism for generation of acoustic and seismic waves due to the pulsating discharge of a gas-and-ash mixture on Karymskii volcano, J. Volcanol. Seismol., 2006, no. 5, pp. 3–16.

  37. Zaslavskii, B.I. and Yur’ev, B.V., Motion of thermics in a stratified atmosphere, J. Appl. Mech. Tech. Phys., 1999, vol. 40, no. 5, pp. 805–810.

    Article  Google Scholar 

  38. Zetser, Yu.I., Rybnov, Yu.S., Kovalev, A.T., Kovaleva, I.Kh., Popova, O.P., and Kharlamov, V.A., Generation of wave disturbances in the atmosphere and ionosphere during the operation of heating facilities, in Dinamicheskie protsessy v geosferakh: Sbornik nauchnykh trudov Inst. Din. Geosfer RAN (Dynamic Processes in Geospheres: Collection of Papers Inst. Geosphere Dynamics RAS), vol. 3, Turuntaev, S.B., Ed., Moscow: GEOS, 2012, pp. 149–156.

    Google Scholar 

Download references

Funding

This research was carried out in partial fulfillment of the state contract of the Sadovsky Institute of Geosphere Dynamics of the Russian Academy of Sciences (state registration number of the research project AAAA-A19-119021890067-0, project ID 0146-2019-0009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Spivak.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spivak, A.A., Rybnov, Y.S., Riabova, S.A. et al. Acoustic, Magnetic, and Electric Effects of Stromboli Volcano Eruption, Italy, in July–August 2019. Izv., Phys. Solid Earth 56, 708–720 (2020). https://doi.org/10.1134/S1069351320050122

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351320050122

Keywords:

Navigation