Skip to main content
Log in

A Devious Equatorial Dipole Hypothesis: on the Low-Latitude Glaciations Problem and Geomagnetic Field Configuration in Late Precambrian

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract—The analysis of paleomagnetic data from Late Neoproterozoic complexes of Siberia and Australia is carried out. We show that the existing paleomagnetic datasets are in a disagreement with the concept of the axial-dipole configuration of the Late Neoproterozoic geomagnetic field: proposed non-actualistic models of the field do not reasonably explain the distribution of the paleomagnetic poles. We carried out analysis of paleomagnetic and virtual geomagnetic poles distribution based on simple geometric calculations. The analysis suggests that the configuration of the Late Neoproterozoic geomagnetic field was determined by the coexistence of a weak, long-lived source that was stably fixed in space, with a main dipole source that experienced sporadic multidirectional jumps within a certain preferred region of the Earth. Predominantly equatorial orientation of the main dipole source is substantiated by paleoclimate proxies. We propose a descriptive non-actualistic model of the Late Neoproterozoic geomagnetic field—the Devious Equatorial Dipole hypothesis, which brings paleomagnetic and paleoclimate data into accordance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. The Ranford Formation is correlated with Brachina Formation of the Adelaide Basin (Lan and Chen, 2012 and references therein).

  2. The “old” paleomagnetic determinations obtained with low intensity and low degree of detail of demagnetizations are not considered in this work.

  3. A number of studies (Chumakov, 2015 and references therein) substantiate the view that the Sturtian glacial period (in the understanding of Ogg et al., 2016) consisted of two discrete glaciations—Sturt-I (or Rapiten) and Sturt- II (or Sturt) separated by a long interglacial period. Inasmuch as the duration of the Sturt glaciation in the sections of the Yenisei Ridge is as of now unclear, the age of the “pre-glacial” Vandadyk Formation can be both ~700 and 728–720 Ma.

  4. Naturally, we cannot make a similar conclusion regarding the single poles older than 550 Ma; however, their belonging to the Madagascar group is evident.

  5. The data are presented for the objects where the directions of N- and R-polarities are obtained in a single section. We do not show the corresponding normals for determination no. 18 (Table 1) for which deviations of N- and R-components from antipodality can be explained by the contamination by metachronous component and fr determinations nos. 7 and 21 where the deviation from antipodality is small and does not exceed a critical value.

  6. As the main source of the Australian group (table), we use pole no. 3 because in this paleomagnetic direction, the parasitic contribution of TLS is partially compensated due to bipolarity (under the reversal of polarities, full compensation of TLS is only possible when TLS is oriented orthogonally to the source contaminated by it). For the predominantly bipolar Madagascar group, we use the averaged (group-average) pole. The calculations of the “expected” declination and inclinations for TLS from the dipole model are purely illustrative as the origin of this source is unclear.

  7. Actually, the N- and R-directions of the Lopata Formation are not antipodal: the substantial increase of the statistics for the section has shown that the deviation from antipodality is ~2.5° but this deviation is statistically significant (unpublished authors’ data).

  8. For each site, we calculated the paleomagnetic poles with a general correction for inclination flattening (King, 1955). Next, from the averaged (corrected for inclination bias) paleomagnetic pole, we calculated the paleomagnetic directions for the sites. In these model paleomagnetic directions, the inclination was accordingly “inversely” flattened, and the directions were converted back into the paleomagnetic poles. The range of the scatter (the stretching on a great circle) of the resulting model poles was compared to that of the original poles of the set.

  9. An essentially close paleomagnetic result was obtained from the Ediacaran intrusions of the Grenville dyke swarm, North America (Halls et al., 2015).

  10.  GP (Long = 122.3°; Lat = –38.1°; A95 = 12.8°) was calculated as the normal to the great circle approximating the distribution of the averaged poles over the Yaltipena, Elatina, Nuccaleena, Brachina, Bunyeroo, Wonoka formations; TLS (Long =103.3°; Lat = 62.2°; A95 = 27.8°) was calculated from the intersection of the great circles approximating the distribution of the individual VGPs of each formation.

REFERENCES

  1. Abrazhevich, A. and van der Voo, R., Incompatible Ediacaran paleomagnetic directions suggest an equatorial geomagnetic dipole hypothesis, Earth Planet. Sci. Lett., 2010, vol. 293, nos. 1–2, pp. 164–170.

    Article  Google Scholar 

  2. Abrajevitch, A., Pillans, B.J., Roberts, A.P., and Kodama, K., Magnetic properties and paleomagnetism of Zebra Rock, Western Australia: Chemical remanence acquisition in hematite pigment and Ediacaran geomagnetic field behavior, Geochem. Geophys. Geosyst., 2018, vol. 19, no. 3, pp. 732–748.

    Article  Google Scholar 

  3. Aubert, J. and Wicht, J., Axial vs. equatorial dipolar dynamo models with implications for planetary magnetic fields, Earth Planet. Sci. Lett., 2004, vol. 221, pp. 409–419.

    Article  Google Scholar 

  4. Bilardello, D. and Kodama, K.P., Rock magnetic evidence for inclination shallowing in the early Carboniferous Deer Lake Group red beds of western Newfoundland, Geophys. J. Int., 2010, vol. 181, no. 1, pp. 275–289.

    Article  Google Scholar 

  5. Bono, R.K., Tarduno, J.A., Nimmo, F., and Cottrell, R.D., Young inner core inferred from Ediacaran ultra-low geomagnetic field intensity, Nat. Geosci., 2019, vol. 12, no. 2, pp. 143–147.

    Article  Google Scholar 

  6. Bukharov, A.A. and Vinichenko, V.N., Geologicheskaya karta SSSR masshtaba 1 : 200 000. Seriya Pribaikal’skaya: List N-49-XIII (Scale 1 : 200 000 Geological Map of the USSR, Pribaikalskaya Series: Sheet N-49-XIII), Mats, V.D., Ed., Leningrad: VSEGEI, 1964.

    Google Scholar 

  7. Chumakov, N.M., Oledeneniya Zemli: Istoriya, stratigraficheskoe znachenie i rol' v biosfere, Tr. Geol. Inst., vyp. 611. (Glaciation of the Earth: History, Stratigraphic and Biospheric Significance, Trans. Geol. Inst., vol. 611), Moscow: GEOS. 2015.

  8. Driscoll, P., Geodynamo recharged, Nat. Geosci., 2019, vol. 12, no. 2, pp. 83–84.

    Article  Google Scholar 

  9. Driscoll, P.E., Simulating 2 Ga of geodynamo history, Geophys. Res. Lett., 2016, vol. 43, pp. 5680–5687.

    Article  Google Scholar 

  10. Embleton, B.J.J. and Williams, G.E., Low palaeolatitude of deposition for late Precambrian periglacial varvites in South Australia: implications for palaeoclimatology, Earth Planet. Sci. Lett., 1986, vol. 79, pp. 419–430.

    Article  Google Scholar 

  11. Evans, D.A.D. and Raub, T.D., Neoproterozoic glacial palaeolatitudes: a global update, in Geological Society, London, Memoirs, vol. 36: The Geological Record of Neoproterozoic Glaciations, Arnaud, E., Halverson, G.P., and Shields-Zhou, G., Eds., London: Geol. Soc., 2011, pp. 93–112.

  12. Gissinger, C., Petitdemange, L., Schrinner, M., and Dormy, E., Bistability between equatorial and axial dipoles during magnetic field reversals, Phys. Rev. Lett., 2012, vol. 108, no. 23, Paper ID 234501.

  13. Gladkochub, D.P., Stanevich, A.M., Mazukabzov, A.M., Donskaya, T.V., Pisarevsky, S.A., Nicoll, G., Motova, Z.L., and Kornilova, T.A., Early evolution of the Paleoasian ocean: LA-ICP-MS dating of detrital zircon from Late Precambrian sequences of the southern margin of the Siberian craton, Russ. Geol. Geophys., 2013, vol. 54, no. 10, pp. 1150–1163.

    Article  Google Scholar 

  14. Halls, H.C., Lovette, A., Hamilton, M., and Söderlund, U., A paleomagnetic and U–Pb geochronology study of the western end of the Grenville dyke swarm: rapid changes in paleomagnetic field direction at ca. 585 Ma related to polarity reversals?, Precambrian Res., 2015, vol. 257, pp. 137–166.

    Article  Google Scholar 

  15. Hill, A.C., Haines, P.W., and Grey, K., Neoproterozoic glacial deposits of central Australia, in Geological Society, London, Memoirs, vol. 36: The Geological Record of Neoproterozoic Glaciations, Arnaud, E., Halverson, G.P., and Shields-Zhou, G., Eds., London: Geol. Soc., 2011, pp. 677–691.

  16. Hoffman, P.F. and Schrag, D.P., The snowball Earth hypothesis: testing the limits of global change, Terra Nova, 2002, vol. 14, pp. 129–155.

    Article  Google Scholar 

  17. Ishihara, N. and Kida, S., Equatorial magnetic dipole field intensification by convection vortices in a rotating spherical shell, Fluid Dyn. Res., 2002, vol. 31, no. 4, pp. 253–274.

    Article  Google Scholar 

  18. Khomentovsky, V.V., The Angarian in the Yenisei Ridge as a standard Neoproterozoic unit, Russ. Geol. Geophys., 2014, vol. 55, no. 3, pp. 361–368.

    Article  Google Scholar 

  19. Khomentovsky, V.V., Shenfil’, V.Yu., Yakshin, M.S., and Butakov, E.P., Opornye razrezy otlozhenii verkhnego dokembriya i nizhnego kembriya Sibirskoi platformy, Trudy Inst. geol. geofiz. Ross. akad. nauk, Sib. otd., vyp. 141 (Reference Sections of the Upper Precambrian and Lower Cambrian Sediments of the Siberian Platform, Proc. Inst. Geol. Geophys. Ross. Acad. Sci., Sib. Branch; vol. 141), Moscow: Nauka, 1972.

  20. Khramov, A.N., Geomagnetic reversals in the Paleozoic: a transitional field, polarity bias, and mantle convection, Izv. Phys. Solid Earth, 2007, vol. 43, no. 10, pp. 800–810.

    Article  Google Scholar 

  21. Khramov, A.N. and Iosifidi, A.G., Asymmetry of geomagnetic polarity: Equatorial dipole, Pangaea, and the Earth’s core, Izv. Phys. Solid Earth, 2012, vol. 48, no. 1, pp. 28–41.

    Article  Google Scholar 

  22. King, R.F., The remanent magnetism of artificially deposited sediment, Mon. Not. R. Astron. Soc., Geophys. Suppl., 1955, no. 7, pp. 115–134.

  23. Kirschvink, J.L., Late Proterozoic low-latitude global glaciation: the snowball earth, in The Proterozoic Biosphere, Schopf, J.W. and Klein, C., Eds., Cambridge: Cambridge Univ. Press. 1992, pp. 51–52.

    Google Scholar 

  24. Kirschvink, J.L., Ripperdan, R.L., and Evans, D.A., Evidence for a large-scale reorganization of Early Cambrian continental masses by inertial interchange true polar wander, Science, 1997, vol. 277, no. 5325, pp. 541–545.

    Article  Google Scholar 

  25. Kochnev, B.B. and Karlova, G.A., New data on biostratigraphy of the Vendian Nemakit-Daldynian stage in the southern Siberian platform, Stratigr. Geol. Correl., 2010, vol. 18, no. 5, pp. 492–504.

    Article  Google Scholar 

  26. Kravchinsky, V.A., Konstantinov, K.M., and Cogné, J.P., Palaeomagnetic study of Vendian and Early Cambrian rocks of South Siberia and Central Mongolia: was the Siberian platform assembled at this time?, Precambrian Res., 2001, vol. 110, nos. 1-4, pp. 61–92.

    Article  Google Scholar 

  27. Kuznetsov, A.B., Ovchinnikova, G.V., Gorokhov, I.M., Letnikova, E.F., Kaurova, O.K., and Konstantinova, G.V., Age constraints on the Neoproterozoic Baikal Group from combined Sr isotopes and Pb–Pb dating of carbonates from the Baikal type section, southeastern Siberia, J. Asian Earth Sci., 2013, vol. 62, pp. 51–66.

    Article  Google Scholar 

  28. Kuznetsov, N.B., Shatsillo, A.V., Pavlov, V.E., Priyatkina, N.S., Danilko, N.K., and Kozionov, A.E., The first finds of ichnofossils and arumberiemorphic imprints in the rocks of the Chingasan and Chapa groups of the Teya-Chapa trough (northeastern Yenisei Ridge). Mater. nauchn. soveshch. “Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu)”, vyp. 11 (Proc. Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt: from Ocean to Continent, vol. 11), Irkutsk, 2013, Irkutsk: IZK SO RAN, 2013, pp. 143–147.

  29. Kuznetsov, N.B., Rud’ko, S.V., Shatsillo, A.V., and Rud’ko, D.V., New finds of ichnofossils from the Vendian/Cambrian boundary levels in the western periphery of the Siberian platform (news from fields 2017), Mater. nauchn. soveshch. “Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu)”, vyp. 15 (Proc. Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt: from Ocean to Continent, vol. 15), Irkutsk, 2017, Irkutsk: IZK SO RAN, 2017, pp. 153–155.

  30. Kuznetsov, N.B., Priyatkina, N.S., Rud’ko, S.V., Shatsillo, A.V., Collins, W.J., and Romanyuk, T.V., Primary data on U/Pb-isotope ages and Lu/Hf-isotope geochemical systematization of detrital zircons from the Lopatinskii Formation (Vendian–Cambrian transition levels) and the tectonic nature of Teya–Chapa depression (northeastern Yenisei Ridge), Dokl. Earth Sci., 2018a, vol. 479, no. 1, pp. 286–289.

    Article  Google Scholar 

  31. Kuznetsov, N.B., Rud’ko, S.V., Shatsillo, A.V., Rud’ko, D.V., Dudenskii, A.S., Sheshukov, V.S., Kanygina, N.A., and Romanyuk, T.V., The first geochronological evidence of Sturt glaciation in Siberia—U-Pb datings of zircons from diamictites of the Vorogovka River in the north of the Yenisei Ridge (news from the laboratory), Mater. nauchn. soveshch. “Geodinamicheskaya evolyutsiya litosfery Tsentral’no-Aziatskogo podvizhnogo poyasa (ot okeana k kontinentu)”, vyp. 16 (Proc. Geodynamic Evolution of the Lithosphere of the Central Asian Mobile Belt: from Ocean to Continent, vol. 16, Irkutsk, 2018, Irkutsk: IZK SO RAN, 2018b, pp. 142–145.

  32. Lan, Z.-W. and Chen, Z.-Q., Possible animal body fossils from the Late Neoproterozoic interglacial successions in the Kimberley region, northwestern Australia, Gondwana Res., 2012, vol. 21, no. 1, pp. 293–301.

    Article  Google Scholar 

  33. McElhinny, M.W., Powell, C.M., and Pisarevsky, S.A., Paleozoic terranes of eastern Australia and the drift history of Gondwana, Tectonophysics, 2003, vol. 362, nos. 1–4, pp. 41–65.

    Article  Google Scholar 

  34. Meert, J., A paleomagnetic analyses of Cambrian true polar wander, Earth Planet. Sci. Lett., 1999, vol.168, nos. 1–2, pp.131–144.

    Article  Google Scholar 

  35. Ogg, J.G., Ogg, G.M., and Gradstein F.M. A Concise Geologic Time Scale 2016, Chapter 4: Cryogenian and Ediakaran, Amsterdam: Elsevier, 2016, pp. 29–39.

  36. Paleomagnitnye napravleniya i paleomagnitnye polyusa: Dannye po SSSR, Materialy Mirovogo tsentra dannykh B, vyp. 5 (Paleomagnetic Directions and Paleomagnetic Poles: Data for the USSR, Materials of the World Data Center B, vol. 5), Khramov, A.N., Ed., Moscow, 1982.

    Google Scholar 

  37. Pavlov, V.E., Gallet, Y., Shatsillo, A.V., and Vodovozov, V.Yu., Paleomagnetism of the Lower Cambrian from the lower Lena river valley: constraints on the apparent polar wander path from the Siberian Platform and the anomalous behavior of the geomagnetic field at the beginning of the Phanerozoic, Izv.Phys. Solid Earth, 2004, vol. 40, no. 2, pp. 114–133.

    Google Scholar 

  38. Pavlov, V., Bachtadse, V., and Mikhailov, V., New Middle Cambrian and Middle Ordovician palaeomagnetic data from Siberia: Llandelian magnetostratigraphy and relative rotation between the Aldan and Anabar-Angara blocks, Earth Planet. Sci. Lett., 2008, vol. 276, nos. 3–4, pp. 229–242.

    Article  Google Scholar 

  39. Pavlov, V.E., Shatsillo, A.V., and Petrov, P.Yu., Paleomagnetism of the upper Riphean deposits in the Turukhansk and Olenek uplifts and Uda Pre-Sayan region and the Neoproterozoic drift of the Siberian Platform, Izv.Phys. Solid Earth, 2015, vol. 51, no. 5, pp. 716–747.

    Article  Google Scholar 

  40. Pavlov, V.E., Pasenko, A.M., Shatsillo, A.V., Powerman, V.I., Malyshev, S.V., and Shcherbakova, V.V., Systematics of Early Cambrian paleomagnetic directions from the northern and eastern regions of the Siberian Platform and the problem of an anomalous geomagnetic field in the time vicinity of the Proterozoic–Phanerozoic boundary, Izv. Phys. Solid Earth, 2018, vol. 54, no. 5, pp. 782–805.

    Article  Google Scholar 

  41. Petrov, P.Yu., Postglacial deposits of the Dal’nyaya Taiga group: Early Vendian in the Ura uplift, Siberia. Communication 1. Barakun Formation, Lithol. Miner. Resour., 2018, vol. 53, no. 5, pp. 417–429.

    Article  Google Scholar 

  42. Piper, J.D.A., Palaeomagnetism of the Loch Doon Granite Complex, Southern Uplands of Scotland: The Late Caledonian palaeomagnetic record and an Early Devonian episode of True Polar Wander, Tectonophysics, 2007, vol. 432, nos. 1–4, pp. 133–157.

    Article  Google Scholar 

  43. Pisarevsky, S.A., Komissarova, R.A., and Khramov, A.N., New paleomagnetic result from Vendian red sediments in Cisbaikalia and the problem of the relationship of Siberia and Laurentia in the Vendian, Geophys. J. Int., 2000, vol. 140, pp. 598–610.

    Article  Google Scholar 

  44. Pisarevsky, S.A., Li, Z.X., Grey, K., and Stevens, M.K. A palaeomagnetic study of Empress 1A, a stratigraphic drillhole in the Officer Basin: evidence for a low-latitude position of Australia in the Neoproterozoic, Precambrian Res., 2001, vol. 110, nos. 1–4, pp. 93–108.

    Article  Google Scholar 

  45. Pisarevsky, S.A., Wingate, M.T.D., Stevens, M.K., and Haines, P.W., Palaeomagnetic results from the Lancer 1 stratigraphic drillhole, Officer Basin, Western Australia, and implications for Rodinia reconstructions, Aust. J. Earth Sci., 2007, vol. 54, pp. 561–572.

    Article  Google Scholar 

  46. Pokrovsky, B.G., Bujakaite, M.I., and Kokin, O.V., Geochemistry of C, O, and Sr isotopes and chemostratigraphy of Neoproterozoic rocks in the northern Yenisei Ridge, Lithol. Miner. Resour., 2012, vol. 47, no. 2, pp. 177–199.

    Article  Google Scholar 

  47. Priyatkina, N., Collins, W.J., Khudoley, A.K., Kusnetsov, N.B., and Huang, H-Q., Detrital zircon record of Meso- and Neoproterozoic sedimentary basins in northern part of the Siberian Craton: characterizing buried crust of the basement, Precambrian Res., 2016, vol. 285, pp. 21–38.

    Article  Google Scholar 

  48. Rajagopalan, S., Schmidt, P.W., and Clark, D.A., Magnetic overprinting of the Brachina Formation/Ulupa Siltstone, Southern Adelaide Foldbelt, prior to Delamerian deformation, Aust. J. Earth Sci., 2011, vol. 58, no. 4, pp. 407–416.

    Article  Google Scholar 

  49. Raub, T.D., Kirschvink, J.L., and Evans, D.A.D., True polar wander: linking deep and shallow geodynamics to hydro- and biospheric hypotheses, in Reference Module in Earth Systems and Environmental Sciences: Treatise on Geophysics, 2nd ed., Schubert, G., Ed., vol. 5: Geomagnetism, Amsterdam: Elsevier, 2007, pp. 511–530.

  50. Rodionov, V.P., Paleomagnetic characteristic of the Vendian/Cambrian boundary section (Chaya River, northern Cisbaikalia), Mater. mezhdunar. shk.-semin. “Problemy paleomagnetizma i magnetizma gornykh porod” (Proc. Int. Workshop “Problems of Paleomagnetism and Rock Magnetism”), Shcherbakov, V.P., Ed., Kazan, 2013, St. Petersburg: SOLO, 2014, pp. 147–152.

  51. Rogov, V.I., Karlova, G.A., Marusin, V.V., Kochnev, B.B., Nagovitsin, K.E., and Grazhdankin, D.V., Duration of the first biozone in the Siberian hypostratotype of the Vendian, Russ. Geol. Geophys., 2015, vol. 56, no. 4, pp. 573–583.

    Article  Google Scholar 

  52. Rozanov, A.Yu., Repina, L.N., Appolonov, M.K., et al., Kembrii Sibiri, Trudy Inst. geol. geofiz. Ross. akad. nauk, Sib. otd., vyp. 788 (Cambrian of Siberia, Proc. Inst. Geol. Geophys. Ross. Acad. Sci., Sib. Branch; vol. 788), Novosibirsk: Nauka, Sib. otd., 1992.

  53. Rud’ko, S.V., Petrov, P.Yu., Kuznetsov, A.B., Shatsillo, A.V., and Petrov, O.L., Refined δ13C trend of the Dal’nyaya Taiga series of the Ura uplift (Vendian, southern part of Middle Siberia), Dokl. Earth Sci., 2017, vol. 477, no. 2, pp. 1449–1453.

    Article  Google Scholar 

  54. Schmidt, P.W. and Williams, G.E., The Neoproterozoic climatic paradox: Equatorial palaeolatitude for Marinoan glaciation near sea level in South Australia, Earth Planet. Sci. Lett., 1995, vol. 134, nos. 1–2, pp. 107–124.

    Article  Google Scholar 

  55. Schmidt, P.W. and Williams, G.E., Palaeomagnetism of the ejecta-bearing Bunyeroo Formation, late Neoproterozoic, Adelaide foldbelt, and the age of the Acraman impact, Earth Planet. Sci. Lett., 1996, vol. 144, nos. 3–4, pp. 347–357.

    Article  Google Scholar 

  56. Schmidt, P.W. and Williams, G.E., Ediacaran palaeomagnetism and apparent polar wander path for Australia: no large true polar wander, Geophys. J. Int., 2010, vol. 182, no. 2, pp. 711–726.

    Article  Google Scholar 

  57. Schmidt, P.W., Williams, G.E., and McWilliams, M.O., Palaeomagnetism and magnetic anisotropy of late Neoproterozoic strata, South Australia: Implications for the palaeolatitude of late Cryogenian glaciation, cap carbonate and the Ediacaran System, Precambrian Res., 2009, vol. 174, nos. 1–2, pp. 35–52.

    Article  Google Scholar 

  58. Semikhatov, M.A., Kuznetsov, A.B., Podkovyrov, V.N., Bartley, J.K., and Davydov, Yu.V., The Yudoma group of stratotype area: C-isotope chemostratigraphic correlations and Yudomian–Vendian relation, Stratigr. Geol. Correl., 2004, vol. 12, no. 5, pp. 435–459.

    Google Scholar 

  59. Shatsillo, A.V., Paleomagnetism of the Vendian in the south of the Siberian platform and some aspects of Late Precambrian geodynamics, Cand. Sci. (Geol.–Mineral.) Dissertation, Moscow: Inst. Phys. Earth RAS, 2006. https://drive.google.com/ drive/folders/0B1kxy81cxWN3X1FwYlBQN0UxRm8

    Google Scholar 

  60. Shatsillo, A.V. and Pavlov, V.E., Systematics of paleomagnetic directions from Early–Middle Devonian rocks of Minusa troughs: new data and old problems, Izv. Phys. Solid Earth, 2019, vol. 55, no. 3, pp. 471–487.

    Article  Google Scholar 

  61. Shatsillo, A.V., Didenko, A.N., and Pavlov, V.E., Two competing Paleomagnetic directions in the Late Vendian: New data for the SW Region of the Siberian Platform, Russ. J. Earth Sci., 2005, vol. 7, no. 4, Paper ID ES4002. https://doi.org/10.2205/2004ES000169

  62. Shatsillo, A.V., Didenko, A.N., and Pavlov, V.E., Paleomagnetism of Vendian rocks in the southwest of the Siberian Platform, Russ. J. Earth Sci., 2006a, vol. 8, Paper ID ES2003. https://doi.org/10.2205/2005ES000182

  63. Shatsillo, A.V., Pisarevskii, S.A., and Kochnev, B.B., Results of paleomagnetic studies of the Neoproterozoic of the Elokhin Mys section (southwest of the Siberian platform), Mater. semin. “Paleomagnetizm i magnetizm gornykh porod; teoriya, praktika, eksperiment” (Proc. Workshop “Paleomagnetism and Magnetism of Rocks; Theory, Practice, Experiment”), Borok, 2006, Moscow: GEOS, 2006b, pp. 162–165.

  64. Shatsillo, A.V., Kuznetsov, N.B., Pavlov, V.E., Fedonkin, M.A., Priyatkina, N.S., Serov, S.G., and Rudko, S.V., The first magnetostratigraphic data on the stratotype of the Lopata Formation, northeastern Yenisei Ridge: Problems of its age and paleogeography of the Siberian Platform at the Proterozoic–Phanerozoic boundary, Dokl. Earth Sci., 2015, vol. 465, no. 2, pp. 1211–1214.

    Article  Google Scholar 

  65. Shatsillo, A.V., Kuznetsov, N.B., and Rud’ko, S.V., New paleomagnetic data on the terminal Precambrian of the Yenisei Ridge (Chingasan and Chapa groups of the Teya-Chapa trough): Siberian drift, true pole shift, or specificity of the Neoproterozoic geomagnetic field?, Mater. L Tekton. soveshch. “Problemy tektoniki i geodinamiki zemnoi kory i mantii,” tom 2 (Proc. L Tekton. Conf. “Problems of Tectonics and Geodynamics of the Earth’s Crust and Mantle,” vol. 2), Moscow, 2018, Moscow: GEOS, 2018, pp. 311–316.

  66. Shatsillo, A.V., Latysheva, I.V., and Kolesnikova, A.A., Tillites of the base of the Baikal Group—a new location and preliminary chemostratigraphic and paleomagnetic data on carbonate postglacial strata (Cisbaikalia, Rita section), Mater. LI Tekton. soveshch. “Problemy tektoniki kontinentov i okeanov,” tom 2 (Proc. LI Tecton. Conf. “Problems of Tectonics of Continents and Oceans,” vol. 2), Moscow, 2019, Moscow: GEOS, 2019a, pp. 346–351.

  67. Shatsillo, A.V., Rud’ko, S.V., Latysheva, I.V., Rud’ko, D.V., Fedyukin, I.V., and Malyshev, S.V., Paleomagnetic, sedimentological, and isotopic data on Neoproterozoic periglacial sediments of Siberia: a new perspective on the low-latitude glaciations problem, Izv. Phys. Solid Earth, 2019b, vol. 55, no. 6, pp. 841–863.

    Article  Google Scholar 

  68. Shcherbakova, V.V., Biggin, A.J., Veselovskiy, R.V., Shatsillo, A.V., Hawkins, L.M.A., Shcherbakov, V.P., and Zhidkov, G.V., Was the Devonian geomagnetic field dipolar or multipolar? Palaeointensity studies of Devonian igneous rocks from the Minusa Basin (Siberia) and the Kola Peninsula dykes, Russia, Geophys. J. Int., 2017. vol. 209, no. 2, pp. 1265–1286.

    Article  Google Scholar 

  69. Shcherbakova, V.V., Bakhmutov, V.G., Thallner, D., Shcherbakov, V.P., Zhidkov, G.V., and Biggin, A.J., Ultra-low palaeointensities from East European Craton, Ukraine support a globally anomalous palaeomagnetic field in the Ediacaran, Geophys. J. Int., 2020, vol. 220, no. 3, pp. 1928–1946.

    Article  Google Scholar 

  70. Sohl, L.E., Christie-Blick, N., and Kent, D.V., Paleomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia: Implications for the duration of low-latitude glaciation in Neoproterozoic time, Geol. Soc. Am. Bull., 1999, vol. 111, no. 8, pp. 1120–1139.

    Article  Google Scholar 

  71. Sovetov, J.K., Sedimentology and stratigraphic correlation of Vendian deposits in the southwestern Siberian craton: major contribution of an exocratonic clastic source to sedimentary systems, Litosfera, 2018, vol. 18, no. 1, pp. 20–45.

    Google Scholar 

  72. Sovetov, J.K. and Le Heron, D.P., Birth and evolution of a Cryogenian basin: Glaciation, rifting and sedimentation in the Vorogovka Basin, Siberia, Sedimentology, 2016, vol. 63, no. 2, pp. 498–522.

    Article  Google Scholar 

  73. Sovetov, Yu.K. and Komlev, D.A., Tillites at the base of the Oselok Group, foothills of the Sayan Mountains, and the Vendian lower boundary in the southwestern Siberian platform, Stratigr. Geol. Correl., 2005, vol. 13, no. 4, pp. 337–366.

    Google Scholar 

  74. Sovetov, J.K., Kulikova, A.E., and Medvedev, M.N., Sedimentary basins in the southwestern Siberian craton: Late Neoproterozoic-Early Cambrian rifting and collisional events, in Geological Society of America, Special Paper,vol. 423:The Evolution of the Rheic Ocean: From Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision, Linnemann, U., Nance, R.D., Kraft, P., and Zulauf, G., Eds., Boulder, USA: Geol. Soc. Am., 2007, pp. 549–578.

    Google Scholar 

  75. Tauxe, L., Kodama, K.P., and Kent, D.V., Testing corrections for paleomagnetic inclination error in sedimentary rocks: A comparative approach, Phys. Earth Planet. Inter., 2008, vol. 169, nos. 1–4, pp. 152–165.

    Article  Google Scholar 

  76. Torsvik, T.H., Meert, J.G., and Smethurst, M.A., Polar Wander and the Cambrian, Science, 1998, vol. 279, no. 5347, p. 9a.

    Article  Google Scholar 

  77. Torsvik, T.H., van der Voo, R., Doubrovine, P.V., Burke, K., Steinberger, B., Ashwal, L.D., Trønnes, R.G., Webb, S.J., and Bull, A.L., Deep mantle structure as a reference frame for movements in and on the Earth, Proc. Natl. Acad. Sci. U. S. A., 2014, vol. 111, no. 24, pp. 8735–8740.

    Article  Google Scholar 

Download references

Funding

The analysis of paleomagnetic data on the Neoproterozoic of Siberia and Australia was supported by the Russian Foundation for Basic Research (project no. 17-05-00021). The synthesis of the results of stratigraphic studies for the Neoproterozoic strata of the Yenisei Ridge and the Baikal–Patom region was supported by the Russian Foundation for Basic Research (project no. 19-05-00794) and by the Russian Science Foundation (project no. 18-77-00059), respectively. The paleomagnetic, regional geological and isotopic studies in the southwestern Siberian platform were carried out in partial fulfillment of the state contracts of the Schmidt Institute of Physics of the Earth and Geological Institute of the Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Shatsillo.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shatsillo, A.V., Rud’ko, S.V., Latysheva, I.V. et al. A Devious Equatorial Dipole Hypothesis: on the Low-Latitude Glaciations Problem and Geomagnetic Field Configuration in Late Precambrian. Izv., Phys. Solid Earth 56, 833–853 (2020). https://doi.org/10.1134/S1069351320060087

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351320060087

Keywords:

Navigation