Skip to main content
Log in

Nanoscale catalysts based on platinum-ruthenium and platinum-ruthenium-tin alloys: Synthesis from appropriate metal complexes and the use in direct methanol electrooxidation

  • Published:
Russian Journal of Coordination Chemistry Aims and scope Submit manuscript

Abstract

Bi- and trimetallic platinum-ruthenium and platinum-ruthenium-tin catalysts with different atomic ratios of the metals in the surface layer were obtained by deposition of appropriate metal complexes onto highly dispersed carbon black and characterized by X-ray powder diffraction, energy-dispersive X-ray spectroscopy, and transmission electron microscopy. Voltammetric measurements showed that the catalyst PtRu(3: 1)/C provides the highest current densities of methanol oxidation, in agreement with the structural data as well as with the electrochemical and power characteristics of the membrane electrode assemblies tested in single direct-methanol fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bockris, J.O.M. and Wroblowa, H., J. Electroanal. Chem., 1964, vol. 7, p. 428.

    Google Scholar 

  2. Watanabe, M. and Motoo, M., J. Electroanal. Chem., 1975, vol. 60, p. 267.

    Article  CAS  Google Scholar 

  3. McNicol, B.D. and Short, R.T., J. Electroanal. Chem., 1977, vol. 81, p. 249.

    Article  CAS  Google Scholar 

  4. Goodenough, J.B., Hamnett, A., Kennedy, B.J., et al., J. Electroanal. Chem., 1988, vol. 240, p. 133.

    Article  CAS  Google Scholar 

  5. Hamnett, A., Weeks, S.A., Kennedy, B.J., et al., Ber. Bunsen-Ges. Phys. Chem., 1990, vol. 94, p. 1014.

    Article  CAS  Google Scholar 

  6. Jusys, Z., Kaiser, J., and Behm, R.J., Electrochim. Acta, 2002, vol. 47, p. 3693.

    Article  CAS  Google Scholar 

  7. Lu, C., Rice, C., Masel, R.I., et al., J. Phys. Chem. B, 2002, vol. 106, p. 9581.

    Article  CAS  Google Scholar 

  8. Takasu, Y., Fujiwara, T., Murakami, Y., et al., J. Electrochem. Soc., 2000, vol. 147, p. 4421.

    Article  CAS  Google Scholar 

  9. Takasu, Y., Itaya, H., Iwazaki, T., et al., Chem. Commun. (Cambridge, UK), 2001, p. 341.

    Google Scholar 

  10. Hills, C.W., Nashner, M.S., Frenkel, A.I., et al., Langmuir, 1999, vol. 15, p. 690.

    Article  CAS  Google Scholar 

  11. Takasu, Y., Matsuda, Y., and Toyoshima, I., Chem. Phys. Lett., 1984, vol. 108, p. 384.

    Article  CAS  Google Scholar 

  12. Mason, M.G., Phys. Rev. B, 1983, vol. 27, p. 748.

    Article  CAS  Google Scholar 

  13. Steigerwalt, S., Deluga, G.A., Cliffel, D.E., and Lukehart, C.M., J. Phys. Chem. B, 2001, vol. 105, p. 8097.

    Article  CAS  Google Scholar 

  14. Joo, S.H., Choi, S.J., Oh, I., et al., Nature, 2001, vol. 412, p. 169.

    Article  CAS  Google Scholar 

  15. Lizcano-Valbuena, W.H., Paganin, V.A., and Gonzalez, E.R., Electrochim. Acta, 2002, vol. 47, p. 3715.

    Article  CAS  Google Scholar 

  16. Pasynskii, A.A. and Eremenko, I.L., Usp. Khim., 1989, vol. 58, p. 303.

    Article  CAS  Google Scholar 

  17. Garcia, B.L., Captain, B., Adams, R.D., et al., J. Clust. Sci., 2007, vol. 18, p. 121.

    Article  CAS  Google Scholar 

  18. Grosshans-Viéles, S., Croizat, J.-L., Paillaud, P., et al., J. Clust. Sci., 2008, vol. 19, p. 73.

    Article  Google Scholar 

  19. Grinberg, V.A., Pasynskii, A.A, Kulova, T.L., et al., Russ. J. Electrochem., 2008, vol. 44, p. 187.

    Article  CAS  Google Scholar 

  20. Grinberg, V.A., Pasynskii, A.A., Kulova, T.L., and Skundin, A.M., III Ross. konf. po vodorodnoi energetike (III Russ. Conf. on Hydrogen Power Engineering), St. Petersburg, 2006, p. 71.

    Google Scholar 

  21. Grinberg, V.A., Kulova, T.L., Skundin, A.M., and Pasynskii, A.A., US Pat. Appl., 20070078052, April 5, 2007.

    Google Scholar 

  22. Law, C.G., Grinberg, V.A., Kulova, T.L., et al., US Pat. Appl., 2007007011084, May 17, 2007.

    Google Scholar 

  23. Grinberg, V.A., Kulova, T.L., Maiorova, N.A., et al., Russ. J. Electrochem., 2007, vol. 43, p. 75.

    Article  CAS  Google Scholar 

  24. Svergun, D., J. Appl. Crystallogr., 1992, vol. 25, p. 495.

    Article  Google Scholar 

  25. Paulus, U.A., Wokaum, A., Scherer, G.G., et al., J. Phys. Chem. B, 2002, vol. 106, p. 4181.

    Article  CAS  Google Scholar 

  26. Grinberg, V.A., Emets, V.V., Mayorova, N.A., et al., Russ. J. Coord. Chem., 2015, vol. 41, p. 679.

    Article  Google Scholar 

  27. Tyumentsev, M.S., Anan’ev, A.V., Shiryaev, A.A., et al., Dokl. Phys. Chem., 2013, vol. 450, no. 2, p. 142.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Grinberg.

Additional information

Original Russian Text © N.A. Mayorova, V.A. Grinberg, V.V. Emets, A.A. Pasynskii, A.A. Shiryaev, V.V. Vysotskii, V.K. Gerasimov, V.V. Matveev, E.A. Nizhnikovskii, V.N. Andreev, 2015, published in Koordinatsionnaya Khimiya, 2015, Vol. 41, No. 12, pp. 749–755.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mayorova, N.A., Grinberg, V.A., Emets, V.V. et al. Nanoscale catalysts based on platinum-ruthenium and platinum-ruthenium-tin alloys: Synthesis from appropriate metal complexes and the use in direct methanol electrooxidation. Russ J Coord Chem 41, 817–822 (2015). https://doi.org/10.1134/S1070328415120052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070328415120052

Keywords

Navigation