Skip to main content
Log in

Phenomenological Lagrangians, gauge models and branes

  • Physics of Elementary Particles and Atomic Nuclei. Theory
  • Published:
Physics of Particles and Nuclei Letters Aims and scope Submit manuscript

Abstract

Phenomenological Lagrangians for physical systems with spontaneously broken symmetries are reformulated in terms of gauge field theory. Description of the Dirac p-branes in terms of the Yang–Mills- Cartan gauge multiplets interacting with gravity, is proved to be equivalent to their description as a closed dynamical system with the symmetry ISO(1,D − 1) spontaneously broken to ISO(1, p) × SO(Dp − 1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Cartan, Riemannian Geometry in an Orthogonal Frame (World Scientific, Singapore, 2001).

    Book  MATH  Google Scholar 

  2. F. Lund and T. Regge, “Unified approach to strings and vortices with soliton solutions,” Phys. Rev. D: Part. Fields 14, 1524–1535 (1976).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. R. Omnes, “A new geometric approach to the relativistic strings,” Nucl. Phys. B 149, 269–284 (1979).

    Article  ADS  MathSciNet  Google Scholar 

  4. B. M. Barbashov, V. V. Nesterenko, and A. M. Chervyakov, “The solitons in some geometrical field theories,” Theor. Math. Phys. 40, 572–581 (1979).

    Article  Google Scholar 

  5. B. M. Barbashov and V. V. Nesterenko, Introduction to the Relativistic String Theory (World Scientific, Singapore, 1990).

    Book  MATH  Google Scholar 

  6. A. A. Zheltukhin, “On relation between a relativistic string and two-dimensional field models,” Sov. J. Nucl. Phys. 34, 311–316 (1981); “Classical relativistic string as an exactly solvable sector of SO(1,1)xSO(2) gauge model,” Phys. Lett. B 116, 147–150 (1982); “Gauge description and nonlinear string equations in D-dimensional space-time,” Theor. Math. Phys. 56, 785–795 (1983). doi 10.1007/BF01016820

    Google Scholar 

  7. A. A. Zheltukhin, “On brane symmetries,” Phys. Part. Lett. 11, 899–903 (2014). doi 10.1134/S1547477114070486; in Proceedings of the Workshop on Supersymmetries and Quantum Symmetries SQS'2013, Dubna, July 29, 2013; “Branes as solutions of gauge theories in gravitational field,” Eur. Phys. J. C 74, 30–48 (2014).10.1134/S1547477114070486

    Article  Google Scholar 

  8. D. V. Volkov, “Phenomenological lagrangians,” Sov. J. Part. Nucl. 4, 1–17 (1973).

    Article  MathSciNet  Google Scholar 

  9. D. V. Volkov and A. A. Zheltukhin, “On description of strings in space and superspace,” Ukr. Fiz. Zh. 30, 809–813 (1985).

    ADS  Google Scholar 

  10. A. A. Zheltukhin, “Hamiltonian formulation for antisymmetric representation of string action,” Theor. Math. Phys. 77, 1264–1273 (1988). doi 10.1007/BF01016981

    Article  Google Scholar 

  11. J. Brugues, T. Curtright, J. Gomis, and L. Mezincescu, “Non-relativistic strings and branes as non-linear realizations of Galilei groups,” Phys. Lett. B 594, 227–233 (2004).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. J. Gomis, K. Kamimura, and P. West, “The construction of brane and superbrane actions using non-linear realizations,” Class. Quantum Grav. 23, 7369 (2006).

    Article  ADS  MATH  Google Scholar 

  13. T. E. Clark, S. T. Love, M. Nitta, T. ter Veldhuis, and C. Xiong, “Oscillating p-branes,” Phys. Rev. D: Part. Fields 76, 105014 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  14. F. Gliozzi and M. Meineri, “Lorentz completion of effective string (and p-brane) action,” J. High Energy Phys. 1208, 1 (2012).

    MathSciNet  Google Scholar 

  15. O. Aharony and Z. Komargodski, “The effective theory of long strings,” J. High Energy Phys. 1305, 118 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. J. Gomis, K. Kamimura, and M. Pons, “Non-linear realizations, goldstone bosons of broken Lorentz rotations and effective actions for p-branes,” Nucl. Phys. B 871, 420 (2013).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. M. A. Semenov-Tyan-Shansky and L. D. Faddeev, “To the theory of nonlinear chiral fields,” Vestn. SPb. Univ. 13 (3), 81–88 (1977).

    MathSciNet  MATH  Google Scholar 

  18. S. Weinberg, “Dynamical approach to current algebra,” Phys. Rev. Lett. 18, 188–191 (1967).

    Article  ADS  Google Scholar 

  19. J. Schwinger, “Chiral dynamics,” Phys. Lett. B 24, 473–476 (1967).

    Article  ADS  Google Scholar 

  20. S. Coleman, J. Wess, and B. Zumino, “Structure of phenomenological lagrangians. 1,” Phys. Rev. 177, 2239 (1969).

    Article  ADS  Google Scholar 

  21. C. Callan, S. Coleman, J. Wess, and B. Zumino, “Structure of phenomenological lagrangians. 2,” Phys. Rev. 177, 2247 (1969).

    Article  ADS  Google Scholar 

  22. O. E. Gusev and A. A. Zheltukhin, “Twistor description of world surfaces and the action integral of strings,” JETP Lett. 64, 487–494 (1996). doi 10.1134/1.567223

    Article  ADS  MathSciNet  Google Scholar 

  23. I. A. Bandos and A. A. Zheltukhin, “Spinor cartan moving n-hedron, Lorentz harmonic formulations of superstrings, and kappa symmetry,” JETP Lett. 54, 421–424 (1991); “Null super p-branes quantum theory in four-dimensional space-time,” Fortschr. Phys. 4, 619–676 (1993); “N = 1 super p-branes in twistor-like Lorentz harmonic formulation,” Class. Quantum Grav. 12, 609–626 (1995).

    ADS  MathSciNet  Google Scholar 

  24. E. A. Ivanov and V. I. Ogievetsky, “The inverse Higgs phenomenon in nonlinear realizations,” Teor. Mat. Fiz. 25, 164 (1975).

    Article  MathSciNet  Google Scholar 

  25. C. Lovelace, “Strings in curved space,” Phys. Lett. B 135, 75 (1984).

    Article  ADS  MathSciNet  Google Scholar 

  26. C. G. Callan, D. Friedan, E. J. Martinec, and M. J. Perry, “Strings in background fields,” Nucl. Phys. B 262, 593 (1985).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Zheltukhin.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheltukhin, A.A. Phenomenological Lagrangians, gauge models and branes. Phys. Part. Nuclei Lett. 14, 312–317 (2017). https://doi.org/10.1134/S1547477117020364

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1547477117020364

Navigation