Skip to main content
Log in

Large-scale structure and galaxy motions in the Leo/Cancer constellations

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

In the region of the sky limited by the coordinates RA = 7ḥ0-12ḥ0, Dec = 0°...+20° and extending from the Virgo Cluster to the South Pole of the Local Supercluster, we consider the data on the galaxies with radial velocities V LG ≲ 2000 km/s. For 290 among them, we determine individual distances and peculiar velocities. In this region, known as the local velocity anomaly zone, there are 23 groups and 20 pairs of galaxies for which the estimates of virial/orbital masses are obtained. A nearby group around NGC3379 = Leo I and NGC3627 as well as the Local Group show the motion from the Local Void in the direction of Leo cloud with a characteristic velocity of about 400 km/s. Another rich group of galaxies around NGC3607 reveals peculiar velocity of about −420 km/s in the frame of reference related with the cosmic background radiation. A peculiar scattered association of dwarf galaxies Gemini Flock at a distance of 8 Mpc has the radial velocity dispersion of only 20 km/s and the size of approximately 0.7 Mpc. The virial mass estimate for it is 300 times greater than the total stellar mass. The ratio of the sum of virial masses of groups and pairs in the Leo/Can region to the sum of stellar masses of the galaxies contained in them equals 26, which is equivalent to the local average density Ω m (local) = 0.074, which is 3–4 times smaller than the global average density of matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. I. Makarov and I. D. Karachentsev, Monthly Notices Royal Astron. Soc. 412, 2498 (2011).

    Article  ADS  Google Scholar 

  2. I. D. Karachentsev and D. I. Makarov, Astrophysical Bulletin 63, 299 (2008).

    Article  ADS  Google Scholar 

  3. D. I. Makarov and I. D. Karachentsev, Astrophysical Bulletin 64, 24 (2009).

    Article  ADS  Google Scholar 

  4. D. N. Spergel, R. Bean, O. Doré, et al., Astrophys. J. Suppl. 170, 377 (2007).

    Article  ADS  Google Scholar 

  5. D. N. Spergel, R. Flauger, and R. Hlozek, arXiv:1312.3313 (2013).

  6. J. Vennik, Tartu Astron. Obs. Publ. 73, 1 (1984).

    Google Scholar 

  7. R. B. Tully, Astrophys. J. 321, 280 (1987).

    Article  ADS  Google Scholar 

  8. I. D. Karachentsev, Astrophysical Bulletin 67, 123 (2012).

    Article  ADS  Google Scholar 

  9. S. Vegetti, L. V. E. Koopmans, A. Bolton, et al., Monthly Notices Royal Astron. Soc. 408, 1969 (2010).

    Article  ADS  Google Scholar 

  10. H. Y. Shan, J. P. Kneib, C. Tao, et al., Astrophys. J. 748, 56 (2012).

    Article  ADS  Google Scholar 

  11. I. D. Karachentsev, O.G. Nasonova, and H.M. Courtois, Astrophys. J. 743, 123 (2011).

    Article  ADS  Google Scholar 

  12. I. D. Karachentsev, O.G. Nasonova, and H.M. Courtois, Monthly Notices Royal Astron. Soc. 429, 2264 (2013).

    Article  ADS  Google Scholar 

  13. I. D. Karachentsev, O.G. Nasonova, and H.M. Courtois, Monthly Notices Royal Astron. Soc. 429, 2677 (2013).

    Article  ADS  Google Scholar 

  14. I. D. Karachentsev, V. E. Karachentseva, and O. G. Nasonova, Astrophysics 57, 457 (2014).

    Article  ADS  Google Scholar 

  15. K. N. Abazajian, J. K. Adelman-McCarthy, M. A. Agüeros, et al., Astrophys. J. Suppl. 182, 543 (2009).

    Article  ADS  Google Scholar 

  16. M. P. Haynes, R. Giovanelli, A. M. Martin, et al., Astron. J. 142, 170 (2011).

    Article  ADS  Google Scholar 

  17. O. L. Wong, E. V. Ryan-Weber, D. A. Garcia-Appadoo, et al., Monthly Notices Royal Astron. Soc. 371, 1855 (2006).

    Article  ADS  Google Scholar 

  18. R. B. Tully and R. Fisher, Astron. and Astrophys. 54, 661 (1977).

    ADS  Google Scholar 

  19. S. Stierwalt, M. P. Haynes, R. Giovanelli, et al., Astron. J. 138, 338 (2009).

    Article  ADS  Google Scholar 

  20. K. Lee-Waddell, K. Spekkens, M. P. Haynes, et al., Monthly Notices Royal Astron. Soc. 427, 2314 (2012).

    Article  ADS  Google Scholar 

  21. R. B. Tully, L. Rizzi, E. J. Shaya, et al., Astron. J. 138, 323 (2009).

    Article  ADS  Google Scholar 

  22. S. S. McGaugh, Astrophys. J. 632, 859 (2005).

    Article  ADS  Google Scholar 

  23. S. Paudel, T. Lisker, K. S. A. Hansson, and A. P. Huxor, Monthly Notices Royal Astron. Soc. 443, 446 (2014).

    Article  ADS  Google Scholar 

  24. R. B. Tully, L. Rizzi, A. E. Dolphin, et al., Astron. J. 132, 729 (2006).

    Article  ADS  Google Scholar 

  25. I. D. Karachentsev, A. Dolphin, R. B. Tully, et al., Astron. J. 131, 1361 (2006).

    Article  ADS  Google Scholar 

  26. K. B. W. McQuinn, J. M. Cannon, A. E. Dolphin, et al., Astrophys. J. 785, 3 (2014).

    Article  ADS  Google Scholar 

  27. J. L. Tonry, A. Dressler, J. P. Blakeslee, et al., Astrophys. J. 546, 681 (2001).

    Article  ADS  Google Scholar 

  28. B. R. Parodi, A. Saha, A. Sandage, and G. A. Tammann, Astrophys. J. 540, 634 (2000).

    Article  ADS  Google Scholar 

  29. R. B. Tully, E. J. Shaya, and M. J. Pierce, Astrophys. J. Suppl. 80, 479 (1992).

    Article  ADS  Google Scholar 

  30. R. B. Tully, E. J. Shaya, I. D. Karachentsev, et al., Astrophys. J. 676, 184 (2008).

    Article  ADS  Google Scholar 

  31. J. Heisler, S. Tremaine, and J. N. Bahcall, Astrophys. J. 298, 8 (1985).

    Article  ADS  Google Scholar 

  32. M. G. Lee and I. S. Jang, Astrophys. J. 773, 13L (2013).

    Article  ADS  Google Scholar 

  33. I. D. Karachentsev and V. E. Karachentseva, Astronomy Reports 48, 267 (2004).

    Article  ADS  Google Scholar 

  34. I. D. Karachentsev and Y. N. Kudrya, Astron. J. 148, 50 (2014).

    Article  ADS  Google Scholar 

  35. S. E. Schneider, Astrophys. J. 343, 94 (1989).

    Article  ADS  Google Scholar 

  36. I. D. Karachentsev, D. I. Makarov, V. E. Karachentseva, and O. V. Melnik, Astronomy Letters 34, 832 (2008).

    Article  ADS  Google Scholar 

  37. B. Nikiel-Wroczynski, M. Soida, D. J. Bomans, and M. Urbanik, Astrophys. J. 786, 144 (2014).

    Article  ADS  Google Scholar 

  38. R. B. Tully, Nearby Galaxy Catalog (Cambridge Univ. Press, Cambridge, 1988).

    Google Scholar 

  39. D. H. Jones, B. A. Peterson, M. Colless, and W. Saunders, Monthly Notices Royal Astron. Soc. 369, 25 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. D. Karachentsev.

Additional information

Original Russian Text © I.D. Karachentsev, O.G. Nasonova, V.E. Karachentseva, 2015, published in Astrofizicheskii Byulleten, 2015, Vol. 70, No. 1, pp. 1–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karachentsev, I.D., Nasonova, O.G. & Karachentseva, V.E. Large-scale structure and galaxy motions in the Leo/Cancer constellations. Astrophys. Bull. 70, 1–15 (2015). https://doi.org/10.1134/S1990341315010010

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341315010010

Keywords

Navigation