Skip to main content
Log in

Mathematical Model of Electron Transfer and Formation of Reactive Oxygen Species in Mitochondrial Complex II

  • Published:
Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology Aims and scope

Abstract

The main goal of this work was a quantitative analysis of the kinetics of the formation of reactive oxygen species (ROS) by complex II of the mitochondrial respiratory chain. For this purpose, a mathematical model was developed for modeling and experimental studies of changes in mitochondria associated with ROS-induced activation of signaling pathways of cell death (apoptosis, necrosis, and necroptosis). A kinetic scheme of electron transfer from succinate to coenzyme Q through a number of redox centers localized in subcomplexes A, B, C, and D of complex II was developed on the basis of published experimental data. The mathematical model corresponding to the kinetic scheme is a system of 17 ordinary differential equations that describes both the concentration of oxidized and reduced states of various electron carriers and the electron flows in complex II, leading to the formation of ROS, superoxide (\({\text{O}}_{2}^{{\centerdot - }}\)) and hydroperoxide (H2O2). The results of analysis of the mathematical model have shown that the bell-shaped kinetics of the ROS formation observed experimentally at a micromolar range of succinate concentrations (from tens to hundreds micromoles of succinate) in the presence of the inhibitors of complex III was an inherent property of only flavin adenine dinucleotide (FADH2) and flavin adenine dinucleotide radical (FADH), two potential generators of ROS. At the same time, ROS formation by the Fe–S redox centers of complex II, as well as ubiquinone-binding center exhibited about sigmoidal kinetics; apparently, these redox centers make a minor contribution to the overall production of ROS by complex II upon the inhibition of complex III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Grimm S. 2013. Respiratory chain complex II as general sensor for apoptosis. Biochim. Biophys. Acta.1827, 565–572.

    Article  CAS  Google Scholar 

  2. Hwang M.-S., Rohlena J., Dong L.-F., Neuzil J., Grimm S. 2014. Powerhouse down: Complex II dissociation in the respiratory chain. Mitochondrion.19, 20–28.

    Article  CAS  Google Scholar 

  3. Lemarie A., Huc L., Pazarentzos E., Mahul-Mellier A.-L., Grimm S. 2011. Specific disintegration of complex II succinate:ubiquinone oxidoreductase links pH changes to oxidative stress for apoptosis induction. Cell Death Differentiation. 18, 338–349.

    Article  CAS  Google Scholar 

  4. Turrens J.F. 2003. Mitochondrial formation of reactive oxygen species. J. Physiol. 552 (2), 335–344.

    Article  CAS  Google Scholar 

  5. Murphy M. 2009. How mitochondria produce reactive oxygen species. Biochem. J.417, 1–13.

    Article  CAS  Google Scholar 

  6. Grivennikova V.G., Kozlovsky V.S., Vinogradov A.D. 2017. Respiratory complex II: ROS production and the kinetics of ubiquinone reduction. Biochim. Biophys. Acta1858 (2), 109–117.

    Article  CAS  Google Scholar 

  7. Quinlan C.L., Orr A.L., Perevoshchikova I.V., Treberg J.R., Ackrell B.A., Brand M.D. 2012. Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 287, 27255–27264.

    Article  CAS  Google Scholar 

  8. Starkov A.A. 2008. The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. NY Acad. Sci. 1147, 37–52.

    Article  CAS  Google Scholar 

  9. Bonke E., Zwicker K., Dröse S. 2015. Manganese ions induce H2O2 generation at the ubiquinone binding site of mitochondrial complex II. Arch. Biochem. Biophys. 580, 75–83.

    Article  CAS  Google Scholar 

  10. Kotlyar A.B., Vinogradov A.D. 1984. Interaction of the membrane-bound succinate dehydrogenase with substrate and competitive inhibitors. Biochim. Biophys. Acta. 784 (1), 24–34.

    Article  CAS  Google Scholar 

  11. Ohnishi T., King T.E., Salerno J.C., Blum H., Bo-wyer J.R., Maida T. 1981. Thermodynamic and electron paramagnetic resonance characterization of flavin in succinate dehydrogenase. J. Biol. Chem.256 (11), 5577–5582.

    CAS  PubMed  Google Scholar 

  12. Ohnishi T., Salerno J.C. 1976. Thermodynamic and EPR characteristics of two ferredoxin-type iron–sulfur centers in the succinate–ubiquinone reductase segment of the respiratory chain. J. Biol. Chem. 251 (7), 2094–2104.

    CAS  PubMed  Google Scholar 

  13. Ohnishi T., Lim J., Winter D.B., King T.E. 1976. Thermodynamic and EPR characteristics of a HiPIP-type iron–sulfur center in the succinate dehydrogenase of the respiratory chain. J. Biol. Chem. 251 (7), 2105–2109.

    CAS  PubMed  Google Scholar 

  14. Hägerhäll C. 1997. Succinate:quinone oxidoreductases. Variations on a conserved theme. Biochim. Biophys. Acta. 1320 (2), 107–141.

    Article  Google Scholar 

  15. Rich P.R. 1984. Electron and proton transfers through quinones and cytochrome bc complexes. Biochim. Biophys. Acta.768 (1), 53–79.

    Article  CAS  Google Scholar 

  16. Anderson R.F., Shinde S.S., Hille R., Rothery R.A., Weiner J.H., Rajagukguk S., Maklashina E., Cecchini G. 2014. Electron-transfer pathways in the heme and quinone-binding domain of complex II (succinate dehydrogenase).Biochemistry.53 (10), 1637–1646.

    Article  CAS  Google Scholar 

  17. Murphy M.P. 2009. How mitochondria produce reactive oxygen species. Biochem. J.417 (1), 1–13.

    Article  CAS  Google Scholar 

  18. Markevich N.I., Hoek J.B. 2015. Computational modeling analysis of mitochondrial superoxide production under varying substrate conditions and upon inhibition of different segments of the electron transport chain. Biochim. Biophys. Acta. 1847 (6–7), 656–679.

    Article  CAS  Google Scholar 

  19. Markevich N.I., Hoek J.B. 2014. Computational modeling analysis of acute and chronic ethanol-induced oxidative stress. Math. Biol. Bioinformat. 9 (1), 63–88.

    Article  CAS  Google Scholar 

  20. Jin Z.Q., Zhou H.Z., Cecchini G., Gray M.O., Karliner J.S. 2005. MnSOD in mouse heart: Acute responses ischemic preconditioning and ischemia–reperfusion injury. Am. J. Physiol. Heart. Circ. Physiol. 288 (6), H2986–H2994.

    Article  CAS  Google Scholar 

  21. Wojtovich A.P., Nehrke K.W., Brookes P.S. 2010. The mitochondrial complex II and ATP-sensitive potassium channel interaction: Quantitation of the channel in heart mitochondria. Acta Biochim. Pol.57 (4), 431–434.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Markevich.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by E. Puchkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Markevich, N.I., Galimova, M.H. & Markevich, L.N. Mathematical Model of Electron Transfer and Formation of Reactive Oxygen Species in Mitochondrial Complex II. Biochem. Moscow Suppl. Ser. A 13, 341–351 (2019). https://doi.org/10.1134/S199074781904007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199074781904007X

Keywords:

Navigation