Skip to main content
Log in

A quantum-topological analysis of noncovalent interactions in secondary polyalanine structures

  • Structure of Chemical Compounds
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The geometric parameters and relative stability of γ- and β-loop conformers of oligomers based on alanine were determined by the Kohn-Sham method (the B3LYP/6–31+G** approximation). The three-dimensional architecture of the β-folded structure and protein α-helix was reproduced using Kohn-Sham calculations with periodic boundary conditions. The Bader quantum-topological molecular structure theory was used to reveal and quantitatively characterize noncovalent interatomic interactions in the secondary structures of model peptides under consideration. Earlier unnoticed additional noncovalent interactions stabilizing the structures under consideration were revealed. In β-loops, these are C-H⋯O and H⋯H interactions, and, in antiparallel β-folded structures, these are weak Cβ-H⋯H-Cβ interactions between side chains. Additional weak bonding interaction between C=O groups in position i and H-Cβ groups in position i + 3 was revealed for the protein α-helix; this interaction is usually ignored in amino acid folding simulations with the use of classic force fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Bella and H. M. Berman, J. Mol. Biol. 264, 734 (1996).

    Article  CAS  Google Scholar 

  2. A. K. Thakur and R. Kishore, Biopolymers 81, 440 (2006).

    Article  CAS  Google Scholar 

  3. E. Vass, M. Hollósi, F. Besson, et al., Chem. Rev. 103, 1917 (2003).

    Article  CAS  Google Scholar 

  4. V. Brenner, F. Piuzzi, I. Dimicoli, et al., Angev. Chem. Int. Ed. 47, 2463 (2007).

    Article  Google Scholar 

  5. V. Brenner, F. Piuzzi, I. Dimicoli, et al., J. Phys. Chem. A 111, 7347 (2007).

    Article  CAS  Google Scholar 

  6. I. Compagnon, J. Oomens, G. Meijer, et al., J. Am. Chem. Soc. 128, 3592 (2006).

    Article  CAS  Google Scholar 

  7. A. Perczel, M. A. McAllister, P. Csaszar, et al., J. Am. Chem. Soc. 115, 4849 (1993).

    Article  CAS  Google Scholar 

  8. R. Kaschner and D. Hohl, J. Phys. Chem. A 102, 5111 (1998).

    Article  CAS  Google Scholar 

  9. I. Topol, S. K. Burt, T. Deretey, et al., J. Am. Chem. Soc. 123, 6054 (2001).

    Article  CAS  Google Scholar 

  10. R. Vargas, J. Garza, B. P. Hay, et al., J. Phys. Chem. A 106, 3214 (2002).

    Article  Google Scholar 

  11. R. Improta and V. Barone, J. Comput. Chem. 25, 1333 (2004).

    Article  CAS  Google Scholar 

  12. Z. Varga and A. Kovács, Int. J. Quantum Chem. 105, 302 (2005).

    Article  CAS  Google Scholar 

  13. S. Scheiner, J. Phys. Chem. B 110, 18670 (2006).

    Article  CAS  Google Scholar 

  14. R. Improta, V. Barone, K. N. Kudin, et al., J. Am. Chem. Soc. 123, 3311 (2001).

    Article  CAS  Google Scholar 

  15. J. Ireta, J. Neugebauer, M. Scheffler, et al., J. Phys. Chem. B 107, 1432 (2003).

    Article  CAS  Google Scholar 

  16. J. Rossmeisl, I. Kristensen, M. Gregensen, et al., J. Am. Chem. Soc. 125, 16383 (2003).

    Article  CAS  Google Scholar 

  17. T.-H. Tang, E. Deretey, S. J. K. Jensen, et al., Eur. Phys. J. D 37, 217 (2006).

    Article  CAS  Google Scholar 

  18. R. Parthasarathi, S. S. Raman, V. Subramanian, et al., J. Phys. Chem. A 111, 7141 (2007).

    Article  CAS  Google Scholar 

  19. R. F. W. Bader, Atoms in Molecules. A Quantum Theory (Oxford Univ., New York, 1990).

    Google Scholar 

  20. A. A. Granovsky, PC GAMESS version 7.0, http://classic.chem.msu.su/gran/gamess/index.html.

  21. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, et al., J. Comput. Chem. 14, 1347 (1993).

    Article  CAS  Google Scholar 

  22. J. Rossmeisl, J. K. Norskov, and K. W. Jacobsen, J. Am. Chem. Soc. 126, 13140 (2004).

    Article  CAS  Google Scholar 

  23. C. Gatti, Z. Kristallogr. 220, 399 (2005).

    Article  CAS  Google Scholar 

  24. V. G. Tsirelson, A. I. Stash, V. A. Potemkin, et al., Acta Crystallogr. B 62, 676 (2006).

    Article  CAS  Google Scholar 

  25. R. F. W. Bader and H. Essen, J. Chem. Phys. 80, 1943 (1984).

    Article  CAS  Google Scholar 

  26. C. F. Matta, N. Castillo, and R. J. Boyd, J. Phys. Chem. B 110, 563 (2006).

    Article  CAS  Google Scholar 

  27. P. I. Dem’yanov and R. M. Gschwind, Organometallics 25, 5709 (2006).

    Article  Google Scholar 

  28. I. Alkorta, L. Barrios, I. Rozas, et al., J. Mol. Struct. (Theochem) 496, 131 (2000).

    Article  CAS  Google Scholar 

  29. E. Espinosa, E. Molins, and C. Lecomte, Chem. Phys. Lett. 285, 170 (1998).

    Article  CAS  Google Scholar 

  30. S. J. Grabowski, W. A. Sokalski, E. Dyguda, et al., J. Phys. Chem. B 110, 6444 (2006).

    Article  CAS  Google Scholar 

  31. M. V. Vener, A. V. Manaev, A. N. Egorova, et al., Khim. Fiz. 27(7), 19 (2008) [Russ. J. Phys. Chem. B 27, 512 (2008)].

    CAS  Google Scholar 

  32. W. F. Bieger-Konig, R. F. W. Bader, and T.-H. Tang, J. Comput. Chem. 3, 317 (1982).

    Article  Google Scholar 

  33. A. I. Jiménez, G. Ballano, and C. Cativiela, Angew. Chem., Int. Ed. Engl. 44, 396 (2005).

    Article  Google Scholar 

  34. M. Crisma, F. Formaggio, A. Moretto, et al., Biopolymers (Peptide Science) 84, 3 (2006).

    Article  CAS  Google Scholar 

  35. R. Flaig, T. Koritsanszky, D. Dittrich, et al., J. Am. Chem. Soc. 124, 3407 (2002).

    Article  CAS  Google Scholar 

  36. M. V. Vener, A. N. Egorova, D. P. Fomin, et al., Chem. Phys. Lett. 440, 278 (2007).

    Article  Google Scholar 

  37. T. Steiner, Angew. Chem., Int. Ed. Engl. 41, 48 (2002).

    Article  CAS  Google Scholar 

  38. A. N. Morosov and S. H. Lin, J. Phys. Chem. B 110, 20555 (2006).

    Article  Google Scholar 

  39. S. Lifson and A. Roig, J. Chem. Phys. 34, 1963 (1961).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Vener.

Additional information

Original Russian Text © M.V. Vener, A.N. Egorova, D.P. Fomin, V.G. Tsirel’son, 2009, published in Khimicheskaya Fizika, 2009, Vol. 28, No. 8, pp. 3–10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vener, M.V., Egorova, A.N., Fomin, D.P. et al. A quantum-topological analysis of noncovalent interactions in secondary polyalanine structures. Russ. J. Phys. Chem. B 3, 541–547 (2009). https://doi.org/10.1134/S1990793109040046

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793109040046

Keywords

Navigation