Skip to main content
Log in

Investigation of 17F+p elastic scattering at near-barrier energies

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

The 17F +p elastic scattering at two near-barrier energies of 3.5 and 4.3 MeV/nucleon, have been analyzed in the framework of the single folding approach. The folded potentials are constructed by folding the density-dependent (DDM3Y) effective nucleon-nucleon interaction over the nuclear density of the one-proton halo nucleus 17F. Two versions of the density are considered. In addition, two versions of the one-nucleon knock-on exchange potentials are introduced to construct the real microscopic potentials. The derived potentials supplemented by phenomenological Woods-Saxon imaginary and spin-orbit potentials produced excellent description of the differential elastic scattering cross sections at the higher energy without need to introduce any renormalization. At the lower energy, however, in order to successfully reproduce the data, it is necessary to reduce the strength of the constructed real DDM3Y potential by about 25% of its original value. Furthermore, good agreement with data is obtained using the extracted microscopic DDM3Y potentials for both real and imaginary parts. Moreover, the interesting notch test is applied to investigate the sensitivity of the elastic scattering cross section to the radial distribution of the constructed microscopic potentials. The extracted reaction (absorption) cross sections are, also, investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. Tanihata et al., Phys. Rev. Lett. 55, 2676 (1985).

    Article  ADS  Google Scholar 

  2. J.S. Al-Khalili, J.A. Tostevin, Phys. Rev. Lett. 76, 3903 (1996).

    Article  ADS  Google Scholar 

  3. A. Jensen, K. Riisager, D.V. Fedorov, E. Garrido, Rev. Mod. Phys. 76, 215 (2004).

    Article  ADS  Google Scholar 

  4. R. Morlock et al., Phys. Rev. Lett. 79, 3837 (1997).

    Article  ADS  Google Scholar 

  5. M.J. Borge et al., Phys. Lett. B 217, 25 (1993).

    Article  ADS  Google Scholar 

  6. H. Kitagawa, N. Tajima, H. Sagawa, Z. Phys. A 358, 381 (1997).

    Article  ADS  Google Scholar 

  7. K.E. Rehm et al., Phys. Rev. Lett. 81, 3341 (1998).

    Article  ADS  Google Scholar 

  8. J.F. Liang et al., Phys. Lett. B 491, 23 (2000).

    Article  ADS  Google Scholar 

  9. A. Ozawa, T. Suzuki, I. Tanihata, Nucl. Phys. A 693, 32 (2001).

    Article  ADS  Google Scholar 

  10. J.F. Liang et al., Phys. Rev. C 65, 051603 (2002).

    Article  ADS  Google Scholar 

  11. J.F. Liang et al., Phys. Rev. C 67, 044603 (2003).

    Article  ADS  Google Scholar 

  12. M. Romoli et al., Phys. Rev. C 69, 064614 (2004).

    Article  ADS  Google Scholar 

  13. J.C. Blackmon et al., Phys. Rev. C 72, 034606 (2005).

    Article  ADS  Google Scholar 

  14. M. Mazzocco et al., Phys. Rev. C 82, 054604 (2010).

    Article  ADS  Google Scholar 

  15. N. Patronis et al., Phys. Rev. C 85, 024609 (2012).

    Article  ADS  Google Scholar 

  16. E.D. Cooper, S. Hama, B.C. Clark, R.L. Mercer, Phys. Rev. C 47, 297 (1993).

    Article  ADS  Google Scholar 

  17. F. Petrovich, S.K. Yoon, M.J. Threapleton, R.J. Philpott, J.A. Carr, F.S. Dietrich, L.F. Hansen, Nucl. Phys. A 563, 387 (1993).

    Article  ADS  Google Scholar 

  18. A. Pakou, N. Alamanos, P. Roussel-Chomaz, F. Auger, D. Rosengrant, A. de Vismes, Nucl. Phys. A 691, 661 (2001) and references therein.

    Article  ADS  Google Scholar 

  19. R. Wolski, A. Pakou, N. Alamanos, Phys. At. Nucl. 65, 736 (2002) (Yad. Fiz. 65.

    Article  Google Scholar 

  20. M. El-Azab Farid, A.M.A. Nossair, Awad A. Ibraheem, Int. J. Mod. Phys. E 17, 715 (2008).

    Article  ADS  Google Scholar 

  21. Zakaria M.M. Mahmoud, K.O. Behairy, M. El-Azab Farid, Phys. At. Nucl. 77, 1 (2014) (Yad. Fiz. 77.

    Article  Google Scholar 

  22. G.R. Satchler, W.G. Love, Phys. Rep. 55, 183 (1979).

    Article  ADS  Google Scholar 

  23. G. Bertsch et al., Nucl. Phys. A 284, 399 (1977).

    Article  ADS  Google Scholar 

  24. D.T. Khoa et al., Nucl. Phys. A 672, 387 (2000).

    Article  ADS  Google Scholar 

  25. D.T. Khoa, W. von Oertzen, Phys. Lett. B 304, 8 (1993).

    Article  ADS  Google Scholar 

  26. D.T. Khoa, W. von Oertzen, Phys. Lett. B 342, 6 (1995).

    Article  ADS  Google Scholar 

  27. D.T. Khoa et al., Nucl. Phys. A 602, 98 (1996).

    Article  ADS  Google Scholar 

  28. D.T. Khoa, W. von Oertzen, H.G. Bohlen, Phys. Rev. C 49, 1652 (1994).

    Article  ADS  Google Scholar 

  29. F. Hofmann, H. Lenske, Phys. Rev. C 57, 2281 (1998).

    Article  ADS  Google Scholar 

  30. X. Campi, A. Bouyssy, Phys. Lett. B 73, 263 (1978).

    Article  ADS  Google Scholar 

  31. H. Krivine, J. Treiner, Phys. Lett. B 88, 212 (1979).

    Article  ADS  Google Scholar 

  32. X. Campi, S. Stringari, Nucl. Phys. A 337, 313 (1980).

    Article  ADS  Google Scholar 

  33. F. Petrovich, Microscopic Optical Potentials (Springer, Berlin, 1979) p. 155.

  34. M. El-Azab Farid, M.A. Hassanain, Nucl. Phys. A 678, 39 (2000).

    Article  ADS  Google Scholar 

  35. M. El-Azab Farid, M.A. Hassanain, Nucl. Phys. A 697, 183 (2002).

    Article  ADS  Google Scholar 

  36. M.E. Brandan, G.R. Satchler, Phys. Rep. 285, 143 (1997).

    Article  ADS  Google Scholar 

  37. M. El-Azab Farid, G.R. Satchler, Nucl. Phys. A 438, 525 (1984).

    Article  Google Scholar 

  38. S.A.E. Khallaf, A.M. Amry, S.R. Mokhtar, Phys. Rev. C 56, 2093 (1997).

    Article  ADS  Google Scholar 

  39. G.D. Alkhazov et al., Nucl. Phys. A 712, 269 (2002).

    Article  ADS  Google Scholar 

  40. Reference Input Parameter Library (RIPL-2), http://www-nds.iaea.org/RIPL-2.

  41. N.M. Clarke, unpublished (1994).

  42. B.A. Watson, P.P. Singh, R.E. Segel, Phys. Rev. 182, 977 (1969).

    Article  ADS  Google Scholar 

  43. Li Xiaohua, Cai Chonghai, Nucl. Phys. A 801, 43 (2008).

    Article  ADS  Google Scholar 

  44. J.G. Cramer, R.M. DeVries, Phys. Rev. C 22, 91 (1980).

    Article  ADS  Google Scholar 

  45. C.Y. Wong, Phys. Rev. Lett. 31, 766 (1973).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awad A. Ibraheem.

Additional information

Communicated by A. Ramos

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Azab Farid, M., Ibraheem, A.A. & Al-Hajjaji, A.S. Investigation of 17F+p elastic scattering at near-barrier energies. Eur. Phys. J. A 51, 134 (2015). https://doi.org/10.1140/epja/i2015-15134-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2015-15134-8

Keywords

Navigation