Skip to main content
Log in

Scaling in heavy-ion collisions and the low-energy frontier

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract.

The common interpretation of elliptic flow \( v_2\) in heavy-ion collisions is that it is produced by hydrodynamic flow at low transverse momentum and by parton energy loss at high transverse momentum. Here, we discuss this interpretation in view of the dependence of \( v_2\) on energy, rapidity and system size, and show that it is far from clear how the relevant properties necessary for this interpretation, low viscosity and high opacity, turn on. A low-energy collider such as NICA is essential for this interpretation to be verified, understood and related to the fundamental properties of hadronic matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gyulassy, L. McLerran, Nucl. Phys. A 750, 30 (2005)

    Article  ADS  Google Scholar 

  2. M. Gyulassy, P. Levai, I. Vitev, Phys. Rev. Lett. 85, 5535 (2000)

    Article  ADS  Google Scholar 

  3. R. Baier, Y.L. Dokshitzer, A.H. Mueller, S. Peigne, D. Schiff, Nucl. Phys. B 484, 265 (1997)

    Article  ADS  Google Scholar 

  4. C. Shen, S.A. Bass et al., J. Phys. G 38, 124045 (2011)

    Article  ADS  Google Scholar 

  5. J.Y. Ollitrault, Phys. Rev. D 46, 229 (1992)

    Article  ADS  Google Scholar 

  6. F. Cooper, G. Frye, Phys. Rev. D 10, 186 (1974)

    Article  ADS  Google Scholar 

  7. O. Fochler, J. Uphoff, Z. Xu, C. Greiner, J. Phys. G 38, 124152 (2011)

    Article  ADS  Google Scholar 

  8. P.M. Chesler, K. Jensen, A. Karch, L.G. Yaffe, Phys. Rev. D 79, 125015 (2009)

    Article  ADS  Google Scholar 

  9. CMS Collaboration (S. Chatrchyan), arXiv:1204.1409

  10. PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 111, 212301 (2013)

    Article  Google Scholar 

  11. B.B. Back et al., Nucl. Phys. A 757, 28 (2005)

    Article  ADS  Google Scholar 

  12. STAR Collaboration (L. Adamczyk), arXiv:1206.5528

  13. PHENIX Collaboration (A. Adare et al.), Phys. Rev. Lett. 98, 162301 (2007)

    Article  Google Scholar 

  14. BRAHMS Collaboration (F. Videbaek), Nucl. Phys. A 830, 43C (2009)

    Article  ADS  Google Scholar 

  15. CMS Collaboration (S. Chatrchyan et al.), Phys. Lett. B 724, 213 (2013)

    Article  ADS  Google Scholar 

  16. G. Torrieri, Phys. Rev. C 89, 024908 (2014)

    Article  ADS  Google Scholar 

  17. G. Torrieri, Phys. Rev. C 82, 054906 (2010) arXiv:0911.4775 [nucl-th]

    Article  ADS  Google Scholar 

  18. G. Torrieri, Phys. Rev. C 76, 024903 (2007)

    Article  ADS  Google Scholar 

  19. Y. Hatta, J. Noronha, G. Torrieri, B.W. Xiao, Phys. Rev. D 90, 074026 (2014)

    Article  ADS  Google Scholar 

  20. H. Song, U.W. Heinz, Phys. Rev. C 78, 024902 (2008)

    Article  ADS  Google Scholar 

  21. E. Schnedermann, J. Sollfrank, U.W. Heinz, Phys. Rev. C 48, 2462 (1993)

    Article  ADS  Google Scholar 

  22. H. Niemi, G.S. Denicol, P. Huovinen, E. Molnar, D.H. Rischke, Phys. Rev. C 86, 014909 (2012)

    Article  ADS  Google Scholar 

  23. J. Aichelin, K. Werner, J. Phys. G 37, 094006 (2010)

    Article  ADS  Google Scholar 

  24. K. Dusling, D. Teaney, Phys. Rev. C 77, 034905 (2008)

    Article  ADS  Google Scholar 

  25. C. Shen, U. Heinz, Phys. Rev. C 85, 054902 (2012) 86

    Article  ADS  Google Scholar 

  26. D. Solanki, P. Sorensen, S. Basu, R. Raniwala, T.K. Nayak, Phys. Lett. B 720, 352 (2013)

    Article  ADS  Google Scholar 

  27. H. Petersen, Q. Li, X. Zhu, M. Bleicher, Phys. Rev. C 74, 064908 (2006) hep-ph/0608189

    Article  ADS  Google Scholar 

  28. G.S. Denicol, C. Gale, S. Jeon, J. Noronha, Phys. Rev. C 88, 064901 (2013)

    Article  ADS  Google Scholar 

  29. J.C. Dunlop, M.A. Lisa, P. Sorensen, Phys. Rev. C 84, 044914 (2011)

    Article  ADS  Google Scholar 

  30. V. Greco, M. Mitrovski, G. Torrieri, arXiv:1201.4800

  31. J. Xu, J. Liao, M. Gyulassy, arXiv:1508.00552

  32. B. Betz, M. Gyulassy, G. Torrieri, Phys. Rev. C 84, 024913 (2011)

    Article  ADS  Google Scholar 

  33. CMS Collaboration (S. Chatrchyan), arXiv:1204.1850

  34. STAR Collaboration (D. McDonald), EPJ Web of Conferences 95, 01009 (2015)

    Article  Google Scholar 

  35. K. Dusling, G.D. Moore, D. Teaney, Phys. Rev. C 81, 034907 (2010)

    Article  ADS  Google Scholar 

  36. S.A. Voloshin, A.M. Poskanzer, R. Snellings, arXiv:0809.2949 [nucl-ex]

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Torrieri.

Additional information

Communicated by D. Blaschke

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Torrieri, G. Scaling in heavy-ion collisions and the low-energy frontier. Eur. Phys. J. A 52, 249 (2016). https://doi.org/10.1140/epja/i2016-16249-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/i2016-16249-0

Navigation