Skip to main content
Log in

Equation of state of asymmetric nuclear matter and the tidal deformability of neutron star

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Neutron star (NS) is a unique astronomical compact object where the four fundamental interactions have been revealed from the observation and studied in different ways. While the macroscopic properties of NS like mass and radius can be determined within the General Relativity using a realistic equation of state (EOS) of NS matter, such an EOS is usually generated by a nuclear structure model like, e.g., the nuclear mean-field approach to asymmetric nuclear matter. Given the radius of NS extended to above 10 km and its mass up to twice the solar mass, NS is expected to be tidally deformed when it is embedded in a strong tidal field. Such a tidal effect was confirmed unambiguously in the gravitation wave signals detected recently by the LIGO and Virgo laser interferometers from GW170817, the first ever direct observation of a binary NS merger. A nonrelativistic mean-field study is carried out in the present work within the Hartree–Fock formalism to construct the EOS of NS matter, which is then used to determine the tidal deformability, gravitational mass, and radius of NS. The mean-field results are compared with the constraints imposed for these quantities by the global analysis of the observed GW170817 data, and a strong impact by the incompressibility of nuclear matter on the hydrostatic configuration of NS is shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Author’s comment:This is a theoretical study with some comparison with the published data, and all data information is properly referenced.]

References

  1. T. Hinderer, Astrophys. J. 677, 1216 (2008)

    Article  ADS  Google Scholar 

  2. T. Hinderer, B.D. Lackey, R.N. Lang, J.S. Read, Phys. Rev. D 81, 123016 (2010)

    Article  ADS  Google Scholar 

  3. B.P. Abbott et al., Phys. Rev. Lett. 119, 161101 (2017)

    Article  ADS  Google Scholar 

  4. B.P. Abbott et al., Astrophys. J. Lett. 848, L12 (2017)

    Article  ADS  Google Scholar 

  5. B.P. Abbott et al., Phys. Rev. Lett. 121, 161101 (2018)

    Article  ADS  Google Scholar 

  6. F.J. Fattoyev, J. Piekarewicz, C.J. Horowitz, Phys. Rev. Lett. 120, 172702 (2018)

    Article  ADS  Google Scholar 

  7. E. Annala, T. Gorda, A. Kurkela, A. Vuorinen, Phys. Rev. Lett. 120, 172703 (2018)

    Article  ADS  Google Scholar 

  8. S. De, D. Finstad, J.M. Lattimer, D.A. Brown, E. Berger, C.M. Biwer, Phys. Rev. Lett. 121, 091102 (2018)

    Article  ADS  Google Scholar 

  9. T. Malik, N. Alam, M. Fortin, C. Providência, B.K. Agrawal, T.K. Jha, B. Kumar, S.K. Patra, Phys. Rev. C 98, 035804 (2018)

    Article  ADS  Google Scholar 

  10. T. Dietrich, M.W. Coughlin, P.T.H. Pang, M. Bulla, J. Heinzel, L. Issa, I. Tews, S. Antier, Science 370, 1450 (2020)

    Article  ADS  Google Scholar 

  11. D.T. Loan, N.H. Tan, D.T. Khoa, J. Margueron, Phys. Rev. C 83, 065809 (2011)

    Article  ADS  Google Scholar 

  12. N.H. Tan, D.T. Loan, D.T. Khoa, J. Margueron, Phys. Rev. C 93, 035806 (2016)

    Article  ADS  Google Scholar 

  13. N. Anantaraman, H. Toki, G. Bertsch, Nucl. Phys. A 398, 269 (1983)

    Article  ADS  Google Scholar 

  14. D.T. Khoa, G.R. Satchler, W. von Oertzen, Phys. Rev. C 56, 954 (1997)

    Article  ADS  Google Scholar 

  15. D.T. Khoa, G.R. Satchler, Nucl. Phys. A 668, 3 (2000)

    Article  ADS  Google Scholar 

  16. D.T. Khoa, W. von Oertzen, A. Ogloblin, Nucl. Phys. A 602, 98 (1996)

    Article  ADS  Google Scholar 

  17. D.T. Khoa, H.S. Than, D.C. Cuong, Phys. Rev. C 76, 014603 (2007)

    Article  ADS  Google Scholar 

  18. D.T. Khoa, B.M. Loc, D.N. Thang, Eur. Phys. J. A 50, 34 (2014)

    Article  ADS  Google Scholar 

  19. N.H. Tan, D.T. Khoa, D.T. Loan, Phys. Rev. C 102, 045809 (2020)

    Article  ADS  Google Scholar 

  20. A. Akmal, V.R. Pandharipande, D.G. Ravenhall, Phys. Rev. C 58, 1804 (1998)

    Article  ADS  Google Scholar 

  21. S. Gandolfi, A.Y. Illarionov, S. Fantoni, J.C. Miller, F. Pederiva, K.E. Schmidt, Mon. Not. R. Astron. Soc. Lett. 404, L35 (2010)

    Article  ADS  Google Scholar 

  22. U. Garg, G. Colò, Prog. Part. Nucl. Phys. 101, 55 (2018)

    Article  ADS  Google Scholar 

  23. Y. Schutz, TAPS Collaboration, Nucl. Phys. A 599, 97c (1996)

    Article  ADS  Google Scholar 

  24. D.T. Khoa, W. von Oertzen, H.G. Bohlen, S. Ohkubo, J. Phys. G 34, R111 (2007)

    Article  Google Scholar 

  25. M.B. Tsang, Z. Chajecki, D. Coupland, P. Danielewicz, F. Famiano, R. Hodges, M. Kilburn, F. Lu, W.G. Lynch, J. Winkelbauer, M. Youngs, Y.X. Zhang, Prog. Part. Nucl. Phys. 66, 400 (2011)

    Article  ADS  Google Scholar 

  26. A. Ono, P. Danielewicz, W.A. Friedman, W.G. Lynch, M.B. Tsang, Phys. Rev. C 68, 051601 (2003)

    Article  ADS  Google Scholar 

  27. L. Trippa, G. Colò, E. Vigezzi, Phys. Rev. C 77, 061304 (2008)

    Article  ADS  Google Scholar 

  28. R. Furnstahl, Nucl. Phys. A 706, 85 (2002)

    Article  ADS  Google Scholar 

  29. J.M. Dong, L.J. Wang, W. Zuo, J.Z. Gu, Phys. Rev. C 97, 034318 (2018)

    Article  ADS  Google Scholar 

  30. X.H. Fan, J.M. Dong, W. Zuo, Phys. Rev. C 89, 017305 (2014)

    Article  ADS  Google Scholar 

  31. W.J. Xie, B.A. Li, Astrophys. J. 883, 174 (2019)

    Article  ADS  Google Scholar 

  32. F. Douchin, P. Haensel, J. Meyer, Nucl. Phys. A 665, 419 (2000)

    Article  ADS  Google Scholar 

  33. F. Douchin, P. Haensel, Astron. Astrophys. 380, 151 (2001)

    Article  ADS  Google Scholar 

  34. E. Chabanat, P. Bonche, P. Haensel, J. Meyer, R. Schaeffer, Nucl. Phys. A 635, 231 (1998)

    Article  ADS  Google Scholar 

  35. S.L. Shapiro, S.A. Teukolsky, Black Holes, White Dwarfs, and Neutron Stars (WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2004), p. 24

    Google Scholar 

  36. I. Bombaci, in Isospin Physics in Heavy Ion Collisions at Intermediate Energies, ed. by B.A. Li, W.U. Schröder (Nova Science, New York, 2001), p. 35

    Google Scholar 

  37. J. Antoniadis et al., Science 340, 6131 (2013)

    Article  ADS  Google Scholar 

  38. P. Bedaque, A.W. Steiner, Phys. Rev. Lett. 114, 031103 (2015)

    Article  ADS  Google Scholar 

  39. H.T. Cromartie et al., Nat. Astron. 4, 72 (2020)

    Article  ADS  Google Scholar 

  40. G. Raaijmakers et al., Astrophys. J. Lett. 893, L21 (2020)

    Article  ADS  Google Scholar 

  41. J.M. Lattimer, M. Prakash, Phys. Rep. 442, 109 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank N. H. Phuc for his help in revising the isovector density dependence of the M3Y interaction. The present research was supported, in part, by the National Foundation for Science and Technology Development of Vietnam (NAFOSTED Project No. 103.04-2017.317).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dao T. Khoa.

Additional information

Communicated by Jerome Margueron.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, N.H., Khoa, D.T. & Loan, D.T. Equation of state of asymmetric nuclear matter and the tidal deformability of neutron star. Eur. Phys. J. A 57, 153 (2021). https://doi.org/10.1140/epja/s10050-021-00467-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00467-y

Navigation