Skip to main content
Log in

Novel method for producing very-neutron-rich hypernuclei via charge-exchange reactions with heavy ion projectiles

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

We propose a novel method for producing very-neutron-rich hypernuclei and corresponding resonance states by employing charge-exchange reactions via pp(\(^{12}\)C, \(^{12}\)N \(K^+\))n\(\varLambda \) with single-charge-exchange and ppp(\(^{9}\)Be, \(^{9}\)C \(K^+\))nn\(\varLambda \) with double-charge-exchange, both of which produce \(\varLambda K^+\) in a target nucleus. The feasibility of producing very-neutron-rich hypernuclei using the proposed method was analysed by applying an ultra-relativistic quantum molecular dynamics model to a \(^6\)Li + \(^{12}\)C reaction at 2 A GeV. The yields of very-neutron-rich hypernuclei, signal-to-background ratios, and background contributions were investigated. The proposed method is a powerful tool for studying very-neutron-rich hypernuclei and resonance states with a hyperon for experiments employing the Super-FRS facility at FAIR and HFRS facility at HIAF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: This is a simulation study with transport model calculations and those analyses, and there are no experimental data associated. All model calculation tools are explained with references and our procedures are described also in details.]

References

  1. D. Davis, 50 years of hypernuclear physics: I. Early Exp. Nucl. Phys. A 754, 3 (2005)

    Article  ADS  Google Scholar 

  2. C. Rappold et al., Hypernuclear spectroscopy of products from \(^6\)Li projectiles on a carbon target at 2\(A\) GeV. Nucl. Phys. A 913, 170 (2013). https://doi.org/10.1016/j.nuclphysa.2013.05.019

    Article  ADS  Google Scholar 

  3. C. Rappold et al., Search for evidence of \({}_{\varLambda }^{3}n\) by observing \(d+{\pi }^{-}\) and \(t+{\pi }^{-}\) final states in the reaction of \({}^{6}\)Li+\({}^{12}\)C at \(2A\) GeV. Phys. Rev. C 88, 041001 (2013). https://doi.org/10.1103/PhysRevC.88.041001

    Article  ADS  Google Scholar 

  4. E. Hiyama et al., Three-body structure of the \(nn\varLambda \) system with \({\varLambda }N\)-\({\varSigma }N\) coupling. Phys. Rev. C 89, 061302 (2014). https://doi.org/10.1103/PhysRevC.89.061302

    Article  ADS  Google Scholar 

  5. A. Gal, H. Garcilazo, Is there a bound \(^3_{\varLambda }\)n? Phys. Lett. B 736, 93 (2014). https://doi.org/10.1016/j.physletb.2014.07.009

  6. H. Garcilazo, A. Valcarce, Nonexistence of a \({\varLambda }nn\) bound state. Phys. Rev. C 89, 057001 (2014). https://doi.org/10.1103/PhysRevC.89.057001

    Article  ADS  Google Scholar 

  7. M. Schfer et al., The continuum spectrum of hypernuclear trios. Phys. Lett. B 808, 135614 (2020). https://doi.org/10.1016/j.physletb.2020.135614

    Article  Google Scholar 

  8. I.R. Afnan, B.F. Gibson, Resonances in the \(\Lambda {\rm nn}\) system. Phys. Rev. C 92, 054608 (2015). https://doi.org/10.1103/PhysRevC.92.054608

  9. S. Bleser et al., Has the neutral double hypernucleus \(^4_{\varLambda \varLambda }\)n been observed? Phys. Lett. B 790, 502 (2019). https://doi.org/10.1016/j.physletb.2019.01.047

    Article  ADS  Google Scholar 

  10. The \(\text{R}^3\)B collaboration, Technical report for the design, construction and commissioning of NeuLAND: the high-resolution neutron time-of-flight spectrometer for \(\text{ R}^3\)B

  11. K. Kisamori et al., Candidate resonant tetraneutron state populated by the \(^{4}{\rm He}(^{8}{\rm He},^{8}{\rm Be})\) reaction. Phys. Rev. Lett. 116, 052501 (2016). https://doi.org/10.1103/PhysRevLett.116.052501

    Article  ADS  Google Scholar 

  12. M. Agnello et al., Evidence for heavy hyperhydrogen \(_{\varLambda }^{6}{\rm H}\). Phys. Rev. Lett. 108, 042501 (2012). https://doi.org/10.1103/PhysRevLett.108.042501

    Article  ADS  Google Scholar 

  13. H. Sugimura et al., Search for \(^6_{\varLambda }\)H hypernucleus by the \(^6\)Li(\(\pi ^-\), \(K^+\)) reaction at \(p_{\pi }\) = 1.2 GeV/c. Phys. Lett. B 729, 39 (2014). https://doi.org/10.1016/j.physletb.2013.12.062

    Article  ADS  Google Scholar 

  14. P.K. Saha et al., Production of the neutron-rich hypernucleus \(_{\varLambda }^{10}{\rm L}{\rm i}\) in the \(({\pi }^{-},{K}^{+})\) double charge-exchange reaction. Phys. Rev. Lett. 94, 052502 (2005). https://doi.org/10.1103/PhysRevLett.94.052502

    Article  ADS  Google Scholar 

  15. Webpage of Super-FRS, https://fair-center.eu/en/for-users/ experiments/nustar/super-frs.html

  16. Webpage of Facility for antiproton and ion research in Europe (FAIR), https://fair-center.eu

  17. Webpage of high intensity heavy-ion accelerator facility (HIAF), http://hiaf.impcas.ac.cn/hiaf_en/public/c/news.html

  18. T. R. Saito et al., Studies of the d+\(\pi ^-\) signal and lifetime of the \(^3_{\varLambda }\)H and \(^4_{\varLambda }\)H hypernuclei by new spectroscopy techniques with FRS, approved proposal S447 by GSI G-PAC

  19. S. Bass et al., Microscopic models for ultrarelativistic heavy ion collisions. Prog. Part. Nucl. Phys. 41, 255 (1998). https://doi.org/10.1016/S0146-6410(98)00058-1

    Article  ADS  Google Scholar 

  20. M. Bleicher et al., Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics mode. Nucl. Part. Phys. 25(9), 1859 (1999). https://doi.org/10.1088/0954-3899/25/9/308

    Article  ADS  Google Scholar 

  21. Y.L. Sun et al., Production of light hypernuclei with light-ion beams and targets. Phys. Rev. C 98, 024903 (2018). https://doi.org/10.1103/PhysRevC.98.024903

    Article  ADS  Google Scholar 

  22. A. Le Févre et al., FRIGA: a new approach to identify isotopes and hypernuclei in n-body transport models. Phys. Rev. C 100, 034904 (2019). https://doi.org/10.1103/PhysRevC.100.034904

    Article  ADS  Google Scholar 

  23. C. Rappold et al., Hypernuclear production cross section in the reaction of \(^6\)Li + \(^{12}\)C at 2 \(A\) GeV. Phys. Lett. B 747, 129 (2015). https://doi.org/10.1016/j.physletb.2015.05.059

    Article  ADS  Google Scholar 

  24. M. Roy-Stephan, Collective excitations of spin-isospin modes. Nucl. Phys. A 488, 187c (1988). https://doi.org/10.1016/0375-9474(88)90261-8

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank H.J. Ong of the Institute of Modern Physics and S. Terashima of Beihang University for their fruitful discussions of charge-exchange reactions. The authors also thank J. Yoshida of RIKEN and Tohoku University for commenting on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takehiko R. Saito.

Additional information

Communicated by Alexandre Obertelli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saito, T.R., Ekawa, H. & Nakagawa, M. Novel method for producing very-neutron-rich hypernuclei via charge-exchange reactions with heavy ion projectiles. Eur. Phys. J. A 57, 159 (2021). https://doi.org/10.1140/epja/s10050-021-00470-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-021-00470-3

Navigation