Skip to main content
Log in

Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise

  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We analyze the dynamics of the FitzHugh-Nagumo (FHN) model in the presence of colored noise and a periodic signal. Two cases are considered: (i) the dynamics of the membrane potential is affected by the noise, (ii) the slow dynamics of the recovery variable is subject to noise. We investigate the role of the colored noise on the neuron dynamics by the mean response time (MRT) of the neuron. We find meaningful modifications of the resonant activation (RA) and noise enhanced stability (NES) phenomena due to the correlation time of the noise. For strongly correlated noise we observe suppression of NES effect and persistence of RA phenomenon, with an efficiency enhancement of the neuronal response. Finally we show that the self-correlation of the colored noise causes a reduction of the effective noise intensity, which appears as a rescaling of the fluctuations affecting the FHN system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. See the special section on “Complex Systems”, Science 284, 79 (1999); O.N. Bjornstad, B.T. Grenfell, Science 293, 638 (2001); S. Ciuchi, F. de Pasquale, B. Spagnolo, Phys. Rev. E 53, 706 (1996); M. Scheffer, S.R. Carpenter, J.A. Foley, C. Folke, B. Walker, Nature 413, 591 (2001); B. Spagnolo, D. Valenti, A. Fiasconaro, Math. Biosc. Engineering 1, 185 (2004)

    Article  Google Scholar 

  2. C.R. Doering, J.C. Gadoua, Phys. Rev. Lett. 69, 2318 (1992); R.N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 84, 3025 (2000); P. Majee, G. Goswami, B. Chandra Bag, Chem. Phys. Lett. 416, 256 (2005); R. Gommers, P. Douglas, S. Bergamini, M. Goonasekera, P.H. Jones, F. Renzoni, Phys. Rev. Lett. 94, 143001 (2005)

    Article  ADS  Google Scholar 

  3. R.N. Mantegna, B. Spagnolo, Phys. Rev. Lett. 76, 563 (1996); R. Wackerbauer, Phys. Rev. E 59, 2872 (1999); A. Mielke, Phys. Rev. Lett. 84, 818 (2000); B. Spagnolo, A.A. Dubkov, N.V. Agudov, Acta Phys. Pol. 35, 1419 (2004); G. Bonanno, D. Valenti, B. Spagnolo, Phys. Rev E 75, 016106 (2007)

    Article  ADS  Google Scholar 

  4. N.V. Agudov, B. Spagnolo, Phys. Rev. E 64, 035102 (2001); A.A. Dubkov, N.V. Agudov, B. Spagnolo, Phys. Rev. E 69, 061103 (2004)

    Article  ADS  Google Scholar 

  5. E. Lanzara, R.N. Mantegna, B. Spagnolo, R. Zangara, Am. J. Phys. 65, 341 (1997); L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Rev. Mod. Phys. 70, 223 (1998); Y. Kashimori, H. Funakubo, T. Kambara, Biophys. J. 75, 1700 (1998); D. Valenti, A. Fiasconaro, B. Spagnolo, Phys. A 331, 477 (2004); B. Kosko, S. Mitaim, Phys. Rev. E 70, 031911 (2004); A. Caruso, M.E. Gargano, D. Valenti, A. Fiasconaro, B. Spagnolo, Fluc. Noise Lett. 5, L349 (2005)

    Article  ADS  Google Scholar 

  6. K. Wiesenfeld, F. Moss, Nature 373, 33 (1995); F. Chapeau-Blondeau, X. Godivier, N. Chambet, Phys. Rev. E 53, 1273 (1996); Special Issue: Advances in neural networks research IJCNN’03, B. Kosko, S. Mitaim, Neural Networks 16, 755 (2003)

    Article  ADS  Google Scholar 

  7. A.L. Hodgkin, A.F. Huxley, J. Physiol. 117, 500 (1952); E.V. Pankratova, A.V. Polovinkin, E. Mosekilde, Eur. Phys. J. B 45, 391 (2005); V.N. Belykh, E.V. Pankratova, Int. J. Bifurcation Chaos 18, (2008) in press.

    Google Scholar 

  8. K.F. Bonhoeffer, J. Gen. Physiol. 32, 69 (1948); K.F. Bonhoeffer, Naturwissenschaften 40, 301 (1953)

    Article  Google Scholar 

  9. B. van der Pol, J. van der Mark, Arch. Néerl. Physiol. 14, 418 (1929)

    Google Scholar 

  10. R. FitzHugh, Bull. Math. Biophysics 17, 257 (1955); R. FitzHugh, J. Gen. Physiol. 43, 867 (1960); R. FitzHugh, Biophys. J. 1, 445 (1961)

    Article  Google Scholar 

  11. J.H. Hale, H. Kocak, Dynamics and Bifurcations (Springer-Verlag, New York, 1991)

    MATH  Google Scholar 

  12. C. Rocsoreanu, A. Georgescu, N. Giurgiteanu, The FitzHugh-Nagumo Model: Bifurcation and Dynamics (Kluwer Academic Publishers, Boston, 2000)

    MATH  Google Scholar 

  13. J. Nagumo, S. Arimoto, S. Yoshizawa, Proc. IRE 50, 2061 (1964)

    Article  Google Scholar 

  14. J. Keener, J. Sneyd, Mathematical Physiology (Springer-Verlag, New York, 1998)

    MATH  Google Scholar 

  15. X. Pei, K. Bachmann, F. Moss, Phys. Lett. A 206, 61 (1995)

    Article  ADS  Google Scholar 

  16. A.S. Pikovsky, J. Kurths, Phys. Rev. Lett. 78, 775 (1997)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  17. D. Nozaki, Y. Yamamoto, Phys. Lett. A 243, 281 (1998)

    Article  ADS  Google Scholar 

  18. A. Longtin, D.R. Chialvo, Phys. Rev. Lett. 81, 4012 (1998)

    Article  ADS  Google Scholar 

  19. E.V. Pankratova, A.V. Polovinkin, B. Spagnolo, Phys. Lett. A 344, 43 (2005)

    Article  MATH  ADS  Google Scholar 

  20. C.W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer, Berlin, 1993)

    Google Scholar 

  21. D. Valenti, A. Fiasconaro, B. Spagnolo, Mod. Prob. Stat. Phys. 2, 91 (2003); D. Valenti, A. Fiasconaro, B. Spagnolo, Fluc. Noise Lett. 5, L337 (2005); D. Valenti, L. Schimansky-Geier, X. Sailer, B. Spagnolo, M. Iacomi, A. Phys. Pol. B 38, 1961 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Valenti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valenti, D., Augello, G. & Spagnolo, B. Dynamics of a FitzHugh-Nagumo system subjected to autocorrelated noise. Eur. Phys. J. B 65, 443–451 (2008). https://doi.org/10.1140/epjb/e2008-00315-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00315-6

PACS

Navigation