Skip to main content
Log in

The evolution of electronic configuration and magnetic characterization of Fe9Ni1, Fe8Ni2 alloy in theoretical calculation

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

To analyze the origin of the magnetic enhancement of Fe-Ni alloy, the electronic configurations and magnetic properties were investigated using density functional theory based on the first-principle. The supercell (5 × 1 × 1) of Fe, Fe9Ni1 and Fe8Ni2 were constructed. The defect formation energy, band structure, density of states and electron density difference were calculated. The results showed that Ni doping changed the electronic configuration of Fe atoms, resulting in the enhancement of spin polarization of Fe and the larger Bohr magnetic moment in Fe-Ni alloys (Fe9Ni1). The results showed that the charge transfer and the atomic spacing between Fe atoms and the dopant Ni atoms played an important role in determination of magnetic moment. The value of Fe supercell (5 × 1 × 1), Fe9Ni1 and Fe8Ni2 were 23.14, 23.34 and 22.61μ B, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Guittoum, A. Layadi, A. Bourzami, H. Tafat, N. Souami, S. Boutarfaia, D. Lacour, J. Magn. Magn. Mater. 320, 1385 (2008)

    Article  Google Scholar 

  2. R. Koohkan, S. Sharafi, H. Shokrollahi, K. Janghorban, J. Magn. Magn. Mater. 320, 1089 (2008)

    Article  Google Scholar 

  3. J. Zhang, C. Yan, S. Liu, Appl. Phys. Lett. 100, 233104 (2012)

    Article  ADS  Google Scholar 

  4. M. Daniil, M.S. Osofsky, D.U. Gubser, Appl. Phys. Lett. 96, 162504 (2010)

    Article  ADS  Google Scholar 

  5. J. Füzer, P. Kollár, D. Olek’sáková, S. Roth, J. Alloys Compd. 483, 557 (2009)

    Article  Google Scholar 

  6. P. Marin, A. Hernando, Appl. Phys. Lett. 94, 122507 (2009)

    Article  ADS  Google Scholar 

  7. Y. Shirakata, N. Hidaka, M. Ishitsuka, IEEE Trans. Magn. 44, 2100 (2008)

    Article  ADS  Google Scholar 

  8. B.V. Neamtu, O. Geoffroy, I. Chicinas, O. Isnard, Mat. Sci. Eng. B 177, 661 (2012)

    Article  Google Scholar 

  9. X.G. Li, A. Chiba, S. Takahashi, J. Magn. Magn. Mater. 170, 339 (1997)

    Article  ADS  Google Scholar 

  10. Z. Xie, D. Geng, X. Liu, S. Ma, J. Mater. Sci. Technol. 27, 607 (2011)

    Article  Google Scholar 

  11. R.H. Yu, L. Ren, S. Basu, K.M. Unruh, A. Parvizi-Majidi, J. Appl. Phys. 87, 5840 (2000)

    Article  ADS  Google Scholar 

  12. A. Djekoun, B. Bouzabata, S. Alleg, J.M. Greneche, Ann. Chim. Sci. Mat. 23, 557 (1998)

    Article  Google Scholar 

  13. C. Suryanarayana, E. Ivanov, V.V. Boldyrev, Mat. Sci. Eng. A 304–306, 151 (2001)

    Article  Google Scholar 

  14. Y. Mishin, M.J. Mehl, D.A. Papaconstantopoulos, Acta. Mater. 53, 4029 (2005)

    Article  Google Scholar 

  15. C.J. Aas, L. Szunyogh, J.S. Chen, R.W. Chantrell, Appl. Phys. Lett. 99, 132501 (2011)

    Article  ADS  Google Scholar 

  16. H.T. Zeng, D. Read, D. Petit, A.V. Jausovec, L. O’Brien, Appl. Phys. Lett. 94, 103113 (2009)

    Article  ADS  Google Scholar 

  17. M. Ohnuma, G. Herzer, P. Kozikowski, C. Polak, V. Budinsky, S. Koppoju, Acta. Mater. 60, 1278 (2012)

    Article  Google Scholar 

  18. B.S. Chun, S.D. Kim, Y.S. Kim, J.Y. Hwang, S.S. Kim, Acta. Mater. 58, 2836 (2010)

    Article  Google Scholar 

  19. K.H. He, J.S. Chen, Y.P. Feng, Appl. Phys. Lett. 99, 072503 (2011)

    Article  ADS  Google Scholar 

  20. Y. Duan, Z. Liu, H. Jing, Y. Zhang, S. Li, J. Mater. Chem. 22, 18291 (2012)

    Article  Google Scholar 

  21. Y. Cai, G. Chen, X. Xu, F. Du, Z. Li, X. Meng, J. Phys. Chem. C 115, 7032 (2011)

    Article  Google Scholar 

  22. M.D. Segall, P.J.D. Lindan, M.J. Probert, C.J. Pickard, J. Phys: Condens. Matter 14, 2717 (2002)

    Article  ADS  Google Scholar 

  23. Y. Chen, Q. Song, H. Yan, X. Yang, T. Wei, Solid State Commun. 151, 619 (2011)

    Article  ADS  Google Scholar 

  24. Y. Cai, Z.F. Huang, X. Meng, X. Ming, C. Wang, G. Chen, Solid State Sci. 13, 350 (2011)

    Article  ADS  Google Scholar 

  25. G. Rahman, I.G. Kim, J. Magn. 13, 124 (2008)

    Article  Google Scholar 

  26. S. Munawar et al., J. Magn. Magn. Mater. 322, 238 (2010)

    Article  ADS  Google Scholar 

  27. X. Jia, M. Qin, W. Yang, J. Magn. Magn. Mater. 323, 1423 (2011)

    Article  ADS  Google Scholar 

  28. Y. Dou, H. Jin, M. Cao, X. Fang, Z. Hou, D. Li, S. Agathopoulos, J. Alloys Compd. 509, 6117 (2011)

    Article  Google Scholar 

  29. S.H. Deng, M.Y. Duan, M. Xu, L. He, Physica B 406, 2314 (2011)

    Article  ADS  Google Scholar 

  30. Y. Duan, S. Gu, Z. Zhang, M. Wen, J. Alloys Compd. 542, 90 (2012)

    Article  Google Scholar 

  31. Y.F. Chen, Q.G. Song, H.Y. Yan, Physica B 406, 3901 (2011)

    Article  ADS  Google Scholar 

  32. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  33. J.H. Lee, T. Shishidou, A.J. Freeman, Phys. Rev. B 66, 233102 (2002)

    Article  ADS  Google Scholar 

  34. H. Luo, F. Meng, Y. Cai, W. Hong, E. Liu, G. Wu, J. Magn. Magn. Mater. 323, 2323 (2011)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, Y., Gu, S., Wen, M. et al. The evolution of electronic configuration and magnetic characterization of Fe9Ni1, Fe8Ni2 alloy in theoretical calculation. Eur. Phys. J. B 86, 438 (2013). https://doi.org/10.1140/epjb/e2013-40441-4

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2013-40441-4

Keywords

Navigation