Skip to main content
Log in

De Haas-van Alphen oscillations in the compensated organic metal α-‵pseudo-κ′-(ET)4H3O[Fe(C2O4)3]·(C6H4Br2)

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

Field-, temperature- and angle-dependent Fourier amplitude of de Haas-van Alphen (dHvA) oscillations are calculated for compensated two-dimensional (2D) metals with textbook Fermi surface (FS) composed of one hole and two electron orbits connected by magnetic breakdown. It is demonstrated that, taking into account the opposite sign of electron and hole orbits, a given Fourier component involves combination of several orbits, the contribution of which must be included in the calculations. Such FS is observed in the strongly 2D organic metal α-‘pseudo-κ’-(ET)4H3O[Fe(C2O4)3]·(C6H4Br2), dHvA oscillations of which have been studied up to 55 T for various directions of the magnetic field with respect to the conducting plane. Calculations are in good quantitative agreement with the data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Rousseau, M. Gener, E. Canadell, Adv. Func. Mater. 14, 201 (2004)

    Article  Google Scholar 

  2. A.B. Pippard, Proc. R. Soc. A 270, 1 (1962)

    Article  ADS  MATH  Google Scholar 

  3. D. Shoenberg, Magnetic Oscillations in Metals (Cambridge University Press, Cambridge, 1984)

  4. J. Wosnitza, in Fermi Surfaces of Low-Dimensional Organic Metals and Superconductors, Springer Tracts in Modern Physics (Springer, Berlin, 1996), vol. 134

  5. J. Singleton, Rep. Prog. Phys. 63, 1111 (2000)

    Article  ADS  Google Scholar 

  6. A. Audouard, J.-Y. Fortin, C.R. Physique 14, 15 (2013)

    Article  ADS  Google Scholar 

  7. J.-M. Carter, D. Podolsky, H.-Y. Kee, Phys. Rev. B 81, 064519 (2010)

    Article  ADS  Google Scholar 

  8. T. Helm, M.V. Kartsovnik, I. Sheikin, M. Bartkowiak, F. Wolff-Fabris, N. Bittner, W. Biberacher, M. Lambacher, A. Erb, J. Wosnitza, R. Gross, Phys. Rev. Lett. 105, 247002 (2010)

    Article  ADS  Google Scholar 

  9. T. Helm, M.V. Kartsovnik, C. Proust, B. Vignolle, C. Putzke, E. Kampert, I. Sheikin, E.-S. Choi, J.S. Brooks, N. Bittner, W. Biberacher, A. Erb, J. Wosnitza, R. Gross, arXiv:1403.7398 (2014)

  10. J.-Y. Fortin, A. Audouard, Phys. Rev. B 77, 134440 (2008)

    Article  ADS  Google Scholar 

  11. J.-Y. Fortin, A. Audouard, Phys. Rev. B 80, 214407 (2009)

    Article  ADS  Google Scholar 

  12. S.S. Khasanov, B.Zh. Narymbetov, L.V. Zorina, L.P. Rozenberg, R.P. Shibaeva, N.D. Kushch, E.B. Yagubskii, R. Rousseau, E. Canadell, Eur. Phys. J. B 1, 419 (1998)

    Article  ADS  Google Scholar 

  13. L.V. Zorina, S.S. Khasanov, S.V. Simonov, R.P. Shibaeva, V.N. Zverev, E. Canadell, T.G. Prokhorova, E.B. Yagubskii, Cryst. Eng. Commun. 13, 2430 (2011)

    Article  Google Scholar 

  14. L.V. Zorina, S.S. Khasanov, S.V. Simonov, R.P. Shibaeva, P.O. Bulanchuk, V.N. Zverev, E. Canadell, T.G. Prokhorova, E.B. Yagubskii, Cryst. Eng. Commun. 14, 460 (2012)

    Article  Google Scholar 

  15. P.D. Grigoriev, M.V. Kartsovnik, W. Biberacher, N.D. Kushch, P. Wyder, Phys. Rev. B 65, 060403(R) (2002)

    Article  ADS  Google Scholar 

  16. L.M. Falicov, H. Stachowiak, Phys. Rev. 147, 505 (1966)

    Article  ADS  Google Scholar 

  17. R.G. Chambers, Proc. Phys. Soc. 88, 701 (1966)

    Article  ADS  Google Scholar 

  18. H. Mori, S. Tanaka, M. Oshima, G. Saito, T. Mori, Y. Maruyama, H. Inokuchi, Bull. Chem. Soc. Jpn 63, 2183 (1990)

    Article  Google Scholar 

  19. S. Uji, C. Terakura, T. Terashima, T. Yakabe, Y. Terai, M. Tokumoto, A. Kobayashi, F. Sakai, Phys. Rev. B 65, 113101 (2002)

    Article  ADS  Google Scholar 

  20. O. Cépas, R.H. McKenzie, J. Merino, Phys. Rev. B 65, 100502 (2002)

    Article  Google Scholar 

  21. D. Vignolles, A. Audouard, V.N. Laukhin, E. Canadell, T.G. Prokhorova, E.B. Yagubskii, Eur. Phys. J. B 203, 489 (2009)

    Google Scholar 

  22. D. Vignolles, A. Audouard, V.N. Laukhin, E. Canadell, T.G. Prokhorova, E.B. Yagubskii, Synth. Met. 160, 2467 (2010)

    Article  Google Scholar 

  23. V.N. Laukhin, A. Audouard, D. Vignolles, E. Canadell, T.G. Prokhorova, E.B. Yagubskii, Low Temp. Phys. 37, 749 (2011)

    Article  ADS  Google Scholar 

  24. M.W.C. Dharma-wardana, Phys. Rev. B 72, 125339 (2005)

    Article  ADS  Google Scholar 

  25. V.M. Gvozdikov, Y.V. Pershin, E. Steep, A.G.M. Jansen, P. Wyder, Phys. Rev. B 65, 165102 (2002)

    Article  ADS  Google Scholar 

  26. M. Heinecke, K. Winzer, D. Schweitzer, Z. Phys. B 93, 45 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Audouard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Audouard, A., Fortin, JY., Laukhin, V.N. et al. De Haas-van Alphen oscillations in the compensated organic metal α-‵pseudo-κ′-(ET)4H3O[Fe(C2O4)3]·(C6H4Br2). Eur. Phys. J. B 87, 200 (2014). https://doi.org/10.1140/epjb/e2014-50340-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2014-50340-9

Keywords

Navigation