Skip to main content
Log in

Brownian motion on random dynamical landscapes

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present a study of overdamped Brownian particles moving on a random landscape of dynamic and deformable obstacles (spatio-temporal disorder). The obstacles move randomly, assemble, and dissociate following their own dynamics. This landscape may account for a soft matter or liquid environment in which large obstacles, such as macromolecules and organelles in the cytoplasm of a living cell, or colloids or polymers in a liquid, move slowly leading to crowding effects. This representation also constitutes a novel approach to the macroscopic dynamics exhibited by active matter media. We present numerical results on the transport and diffusion properties of Brownian particles under this disorder biased by a constant external force. The landscape dynamics are characterized by a Gaussian spatio-temporal correlation, with fixed time and spatial scales, and controlled obstacle concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Einstein, Ann. Phys. 17, 549 (1905)

    Article  Google Scholar 

  2. M. von Smoluchowski, Ann. Phys. 21, 756 (1906)

    Article  Google Scholar 

  3. P. Langevin, C.R. Hebd. Séances Acad. Sci. 146, 530 (1908)

    Google Scholar 

  4. L.S. Ornstein, Proc. R. Acad. Amsterdam 21, 96 (1917)

    Google Scholar 

  5. P.-G. de Gennes, J. Stat. Phys. 12, 463 (1975)

    Article  ADS  Google Scholar 

  6. J.P. Bouchaud, A. Georges, Phys. Rep. 195, 127 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  7. J.M. Sancho, A.M. Lacasta, Eur. Phys. J. Special Topics 187, 49 (2010)

    Article  ADS  Google Scholar 

  8. F. Höfling, T. Franosch, Rep. Prog. Phys. 76, 046602 (2013)

    Article  ADS  Google Scholar 

  9. I. Goychuk, V.O. Kharchenko, Phys. Rev. Lett. 113, 100601 (2014)

    Article  ADS  Google Scholar 

  10. J.A. Dix, A.S. Verkman, Annu. Rev. Biophys. 37, 247 (2008)

    Article  Google Scholar 

  11. A. Khoshnood, M.A. Jalali, Phys. Rev. E 88, 032705 (2013)

    Article  ADS  Google Scholar 

  12. M. Weiss, Phys. Rev. E 88, 010101 (2013)

    Article  ADS  Google Scholar 

  13. J.M. Sancho, A.M. Lacasta, K. Lindenberg, I.M. Sokolov, A.H. Romero, Phys. Rev. Lett. 92, 250601 (2004)

    Article  ADS  Google Scholar 

  14. M. Khoury, A.M. Lacasta, J.M. Sancho, K. Lindenberg, Phys. Rev. Lett. 106, 090602 (2011)

    Article  ADS  Google Scholar 

  15. M. Suñé, J.M. Sancho, K. Lindenberg, Phys. Rev. E 88, 062105 (2013)

    ADS  Google Scholar 

  16. M. Suñé, J.M. Sancho, K. Lindenberg, Eur. Phys. J. B 87, 50295 (2014)

    Google Scholar 

  17. M. Schunack, T.R. Linderoth, F. Rosei, E. Lægsgaard, I. Stensgaard, F. Besenbacher, Phys. Rev. Lett. 88, 156102 (2002)

    Article  ADS  Google Scholar 

  18. Q. Xu, L. Feng, R. Sha, N.C. Seeman, P.M. Chaikin, Phys. Rev. Lett. 106, 228102 (2011)

    Article  ADS  Google Scholar 

  19. A.S. de Wijn, Phys. Rev. E 84, 011610 (2011)

    Article  ADS  Google Scholar 

  20. F. Trovato, V. Tozzini, Biophys. J. 107, 2579 (2014)

    Article  ADS  Google Scholar 

  21. F. Peruani, J. Sarruß, V. Jakovljevic, L. Søgaard-Andersen, A. Deutsch, M. Bär, Phys. Rev. Lett. 108, 098102 (2012)

    Article  ADS  Google Scholar 

  22. A. Basu, J.F. Joanny, F. Jülicher, J. Prost, Eur. Phys. J. E 27, 149 (2008)

    Article  Google Scholar 

  23. N. Sarkar, A. Basu, Eur. Phys. J. E 34, 44 (2011)

    Article  ADS  Google Scholar 

  24. M.C. Marchetti, J.F. Joanny, S. Ramaswamy, T.B. Liverpool, J. Prost, M. Rao, R.A. Simha, Rev. Mod. Phys. 85, 1143 (2013)

    Article  ADS  Google Scholar 

  25. M. Suñé, J.M. Sancho, A.M. Lacasta, Fluc. Noise Lett. 11, 1250026 (2012)

    Article  Google Scholar 

  26. E. Vilaseca, A. Isvoran, S. Madurga, I. Pastor, J. L L. Garcés, F. Mas, Phys. Chem. Chem. Phys. 13, 7396 (2011)

    Article  Google Scholar 

  27. M. Gori, I. Donato, E. Floriani, I. Nardecchia, M. Pettini, arXiv:1601.03626 [physics.bio-ph] (2016)

  28. L. Pitulice, E. Vilaseca, I. Pastor, S. Madurga, J.LL. Garcés, A. Isvoran, F. Mas, Math. Biosci. 251, 72 (2014)

    Article  MathSciNet  Google Scholar 

  29. M.T. Klann, A. Lapin, M. Reuss, BMC Syst. Biol. 5, 71 (2011)

    Article  Google Scholar 

  30. D. Stauffer, C. Schulze, D.W. Heermann, J. Biol. Phys. 33, 305 (2007)

    Article  Google Scholar 

  31. J.-H. Jeon, A.V. Chechkin, R. Metzler, Phys. Chem. Chem. Phys. 16, 15811 (2014)

    Article  Google Scholar 

  32. H.A. Makse, S. Havlin, M. Schwartz, H.E. Stanley, Phys. Rev. E 53, 5445 (1996)

    Article  ADS  Google Scholar 

  33. J. García-Ojalvo, J.M. Sancho, Noise in Spatially Extended Systems (Springer, New York, 1999)

  34. J. García-Ojalvo, J.M. Sancho, L. Ramírez-Piscina, Phys. Rev. A 46, 4670 (1992)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Suñé Simon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suñé Simon, M., Sancho, J. & Lindenberg, K. Brownian motion on random dynamical landscapes. Eur. Phys. J. B 89, 79 (2016). https://doi.org/10.1140/epjb/e2016-60963-3

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2016-60963-3

Keywords

Navigation