Skip to main content
Log in

Can black holes be torn up by phantom dark energy in cyclic cosmology?

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal C Aims and scope Submit manuscript

Abstract

Infinitely cyclic cosmology is often frustrated by the black hole problem. It has been speculated that this obstacle in cyclic cosmology can be removed by taking into account a peculiar cyclic model derived from loop quantum cosmology or the braneworld scenario, in which phantom dark energy plays a crucial role. In this peculiar cyclic model, the mechanism of solving the black hole problem is through tearing up black holes by phantom. However, using the theory of fluid accretion onto black holes, we show in this paper that there exists another possibility: that black holes cannot be torn up by phantom in this cyclic model. We discussed this possibility and showed that the masses of black holes might first decrease and then increase, through phantom accretion onto black holes in the expanding stage of the cyclic universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.C. Tolman, Phys. Rev. 38, 1758 (1931)

    Article  MATH  ADS  Google Scholar 

  2. R.C. Tolman, Relativity, Thermodynamics and Cosmology (Oxford University Press, London, 1934)

    Google Scholar 

  3. J. Khoury, B.A. Ovrut, P.J. Steinhardt, N. Turok, Phys. Rev. D 64, 123522 (2001). hep-th/0103239

    Article  ADS  MathSciNet  Google Scholar 

  4. P.J. Steinhardt, N. Turok, Science 296, 1436 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  5. P.J. Steinhardt, N. Turok, Phys. Rev. D 65, 126003 (2002). hep-th/0111098

    Article  ADS  MathSciNet  Google Scholar 

  6. L.A. Boyle, P.J. Steinhardt, N. Turok, Phys. Rev. D 70, 023504 (2004). hep-th/0403026

    Article  ADS  MathSciNet  Google Scholar 

  7. P.J. Steinhardt, N. Turok, Science 312, 1180 (2006). astro-ph/0605173

    Article  ADS  MathSciNet  Google Scholar 

  8. M.G. Brown, K. Freese, W.H. Kinney, J. Cosmol. Astropart. Phys. 0803, 002 (2008). arXiv:astro-ph/0405353

    Article  ADS  Google Scholar 

  9. L. Baum, P.H. Frampton, Phys. Rev. Lett. 98, 071301 (2007). hep-th/0610213

    Article  ADS  MathSciNet  Google Scholar 

  10. X. Zhang, arXiv:0711.0667 [hep-th]

  11. X. Zhang, Eur. Phys. J. C 59, 755 (2009)

    Article  ADS  Google Scholar 

  12. R.R. Caldwell, M. Kamionkowski, N.N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003). astro-ph/0302506

    Article  ADS  Google Scholar 

  13. A. Ashtekar, T. Pawlowski, P. Singh, Phys. Rev. D 73, 124038 (2006). gr-qc/0604013

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Ashtekar, T. Pawlowski, P. Singh, Phys. Rev. D 74, 084003 (2006). gr-qc/0607039

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Ashtekar, AIP Conf. Proc. 861, 3 (2006). gr-qc/0605011

    Article  ADS  Google Scholar 

  16. P. Singh, K. Vandersloot, G.V. Vereshchagin, Phys. Rev. D 74, 043510 (2006). gr-qc/0606032

    Article  ADS  Google Scholar 

  17. Y. Shtanov, V. Sahni, Phys. Lett. B 557, 1 (2003). gr-qc/0208047

    Article  MATH  ADS  Google Scholar 

  18. E. Babichev, V. Dokuchaev, Yu. Eroshenko, Phys. Rev. Lett. 93, 021102 (2004). gr-qc/0402089

    Article  ADS  Google Scholar 

  19. P.F. Gonzalez-Diaz, Phys. Rev. Lett. 93, 071301 (2004). astro-ph/0404045

    Article  ADS  Google Scholar 

  20. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 3370 (1999). hep-ph/9905221

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. L. Randall, R. Sundrum, Phys. Rev. Lett. 83, 4690 (1999). hep-th/9906064

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. M. Bojowald, Phys. Rev. Lett. 100, 221301 (2008). arXiv:0805.1192 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  23. R.R. Caldwell, Phys. Lett. B 545, 23 (2002). astro-ph/9908168

    Article  ADS  Google Scholar 

  24. B. Feng, X.L. Wang, X.M. Zhang, Phys. Lett. B 607, 35 (2005). astro-ph/0404224

    Article  ADS  Google Scholar 

  25. X. Zhang, Y. Ling, J. Cosmol. Astropart. Phys. 0708, 012 (2007). arXiv:0705.2656 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  26. C. Gao, X. Chen, V. Faraoni, Y.G. Shen, Phys. Rev. D 78, 024008 (2008). arXiv:0802.1298 [gr-qc]

    Article  ADS  Google Scholar 

  27. V. Faraoni, C. Gao, X. Chen, Y.G. Shen, Phys. Lett. B 671, 7 (2009). arXiv:0811.4667 [gr-qc]

    Article  ADS  Google Scholar 

  28. H.H. Xiong, Y.F. Cai, T. Qiu, Y.S. Piao, X.M. Zhang, Phys. Lett. B 666, 212 (2008). arXiv:0805.0413 [astro-ph]

    Article  ADS  Google Scholar 

  29. P. Martin-Moruno, Phys. Lett. B 659, 40 (2008). arXiv:0709.4410 [astro-ph]

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X. Can black holes be torn up by phantom dark energy in cyclic cosmology?. Eur. Phys. J. C 60, 661–667 (2009). https://doi.org/10.1140/epjc/s10052-009-0967-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjc/s10052-009-0967-5

PACS

Navigation